Abstract

This paper presents a numerical investigation on heat transfer and flow behavior for non-Newtonian nanofluids with different nanoparticles (Al2O3 and CuO) and carboxymethyl cellulose (CMC) with water as a base fluid. The analysis has been carried out in an elliptical tube. Power-law model is adopted to depict the non-Newtonian nature of nanofluid. The present study has been done with a range of nanosized particles 0–4% by volume, and the variation of Reynolds number is kept under the laminar condition. The physical model covers two concentric tubes used to create an annular space. The effects of volume fraction, particle type, and base fluid have been investigated at different Reynolds numbers numerically. Also, the effect of pressure and heat transfer coefficient on the flow behavior of non-Newtonian nanofluids is analyzed. The results concluded that Al2O3 particles showed 219% and CuO particles give 195% higher heat transfer coefficient as compared with pure water.

References

1.
Lee
,
Y. K.
,
2014
, “
The Use of Nanofluids in Domestic Water Heat Exchanger
,”
J. Adv. Res. Appl. Mech.
,
3
(
1
), pp.
9
24
.
2.
Sidik
,
N. A. C.
, and
Alawi
,
O. A.
,
2014
, “
Computational Investigations on Heat Transfer Enhancement Using Nanorefrigerants
,”
J. Adv. Res. Des.
,
1
(
1
), pp.
35
41
.
3.
Zainal
,
S.
,
Tan
,
C.
,
Sian
,
C. J.
, and
Siang
,
T. J.
,
2016
, “
ANSYS Simulation for Ag/HEG Hybrid Nanofluid in Turbulent Circular Pipe
,”
J. Adv. Res. Appl. Mech.
,
23
(
1
), pp.
20
35
.
4.
Wong
,
K. V.
, and
De Leon
,
O.
,
2010
, “
Applications of Nanofluids: Current and Future
,”
Adv. Mech. Eng.
,
2
, p.
519659
. 10.1155/2010/519659
5.
Choi
,
S. U. S.
,
Singer
,
D. A.
, and
Wang
,
H. P.
,
1995
, “
Developments and Applications of Non-Newtonian Flows
,”
ASME Fed
,
66
, pp.
99
105
.
6.
Rennie
,
T. J.
, and
Raghavan
,
G. S. V.
,
2007
, “
Thermally Dependent Viscosity and Non-Newtonian Flow in a Double-Pipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
862
868
. 10.1016/j.applthermaleng.2006.09.006
7.
Sridhar
,
S. V.
,
Karuppasamy
,
R.
, and
Sivakumar
,
G. D.
,
2020
, “
Experimental Investigation of Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using SnO2-Water and Ag-Water Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041016
. 10.1115/1.4045699
8.
Sujith
,
S. V.
,
Solanki
,
A. K.
, and
Mulik
,
R. S.
,
2021
, “
Experimental Evaluation in Thermal Conductivity Enhancement and Heat Transfer Optimization of Eco-friendly Al2O3–Pure Coconut Oil Based Nano Fluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031005
. 10.1115/1.4047936
9.
Nimmagadda
,
R.
, and
Venkatasubbaiah
,
K.
,
2017
, “
Two-Phase Analysis on the Conjugate Heat Transfer Performance of Microchannel With Cu, Al, SWCNT, and Hybrid Nanofluids
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041011
. 10.1115/1.4036804
10.
Pawar
,
S. S.
, and
Sunnapwar
,
V. K.
,
2013
, “
Experimental Studies on Heat Transfer to Newtonian and Non-Newtonian Fluids in Helical Coils With Laminar and Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
792
804
. 10.1016/j.expthermflusci.2012.09.024
11.
Bahiraei
,
M.
,
Khosravi
,
R.
, and
Heshmatian
,
S.
,
2017
, “
Assessment and Optimization of Hydrothermal Characteristics for a Non-Newtonian Nanofluid Flow Within Miniaturized Concentric-Tube Heat Exchanger Considering Designer’s Viewpoint
,”
Appl. Therm. Eng.
,
123
, pp.
266
276
. 10.1016/j.applthermaleng.2017.05.090
12.
Bahiraei
,
M.
,
Mazaheri
,
N.
, and
Alighardashi
,
M.
,
2017
, “
Development of Chaotic Advection in Laminar Flow of a Non-Newtonian Nanofluid: A Novel Application for Efficient Use of Energy
,”
Appl. Therm. Eng.
,
124
, pp.
1213
1223
. 10.1016/j.applthermaleng.2017.06.106
13.
Tahiri
,
A.
, and
Mansouri
,
K.
,
2017
, “
Theoretical Investigation of Laminar Flow Convective Heat Transfer in a Circular Duct for a Non-Newtonian Nanofluid
,”
Appl. Therm. Eng.
,
112
, pp.
1027
1039
. 10.1016/j.applthermaleng.2016.10.137
14.
Lorenzini
,
M.
,
Daprà
,
I.
, and
Scarpi
,
G.
,
2017
, “
Heat Transfer for a Giesekus Fluid in a Rotating Concentric Annulus
,”
Appl. Therm. Eng.
,
122
, pp.
118
125
. 10.1016/j.applthermaleng.2017.05.013
15.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Turbulent Forced Convection Heat Transfer of Non-Newtonian Nanofluids
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1351
1356
. 10.1016/j.expthermflusci.2011.05.003
16.
Nouri
,
J. M.
, and
Whitelaw
,
J. H.
,
1997
, “
Flow of Newtonian and Non-Newtonian Fluids in an Eccentric Annulus With Rotation of the Inner Cylinder
,”
Int. J. Heat Fluid Flow
,
18
(
2
), pp.
236
246
. 10.1016/S0142-727X(96)00086-0
17.
Heris
,
S. Z.
,
Nassan
,
T. H.
,
Noie
,
S. H.
,
Sardarabadi
,
H.
, and
Sardarabadi
,
M.
,
2013
, “
Laminar Convective Heat Transfer of Al2O3/Water Nanofluid Through Square Cross-sectional Duct
,”
Int. J. Heat Fluid Flow
,
44
, pp.
375
382
. 10.1016/j.ijheatfluidflow.2013.07.006
18.
Eshgarf
,
H.
, and
Afrand
,
M.
,
2016
, “
An Experimental Study on Rheological Behavior of Non-Newtonian Hybrid Nano-coolant for Application in Cooling and Heating Systems
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
221
227
. 10.1016/j.expthermflusci.2016.03.015
19.
Crespí-Llorens
,
D.
,
Vicente
,
P.
, and
Viedma
,
A.
,
2016
, “
Flow Pattern of Non-Newtonian Fluids in Reciprocating Scraped Surface Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
306
323
. 10.1016/j.expthermflusci.2016.03.002
20.
Ilyas
,
S. U.
,
Pendyala
,
R.
,
Narahari
,
M.
, and
Susin
,
L.
,
2017
, “
Stability, Rheology and Thermal Analysis of Functionalized Alumina-Thermal Oil-Based Nanofluids for Advanced Cooling Systems
,”
Energy Convers. Manag.
,
142
, pp.
215
229
. 10.1016/j.enconman.2017.01.079
21.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
855
864
. 10.1016/j.ijheatfluidflow.2005.10.005
22.
Yu
,
J.
,
Kang
,
S.-W.
,
Jeong
,
R.-G.
, and
Banerjee
,
D.
,
2016
, “
Experimental Validation of Numerical Predictions for Forced Convective Heat Transfer of Nanofluids in a Microchannel
,”
Int. J. Heat Fluid Flow
,
62
, pp.
203
212
. 10.1016/j.ijheatfluidflow.2016.11.001
23.
Dawood
,
H. K.
,
Mohammed
,
H. A.
,
Sidik
,
N. A. C.
,
Munisamy
,
K. M.
, and
Alawi
,
O. A.
,
2017
, “
Heat Transfer Augmentation in Concentric Elliptic Annular by Ethylene Glycol Based Nanofluids
,”
Int. Commun. Heat Mass Transf.
,
82
, pp.
29
39
. 10.1016/j.icheatmasstransfer.2017.02.008
24.
Motlagh
,
Y. G.
,
Ahn
,
H. T.
,
Hughes
,
T. J. R.
, and
Calo
,
V. M.
,
2013
, “
Simulation of Laminar and Turbulent Concentric Pipe Flows With the Isogeometric Variational Multiscale Method
,”
Comput. Fluids
,
71
, pp.
146
155
. 10.1016/j.compfluid.2012.09.006
25.
Tayebi
,
T.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2020
, “
Natural Convection and Entropy Production in Hybrid Nanofluid Filled-Annular Elliptical Cavity With Internal Heat Generation or Absorption
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100605
. 10.1016/j.tsep.2020.100605
26.
Mehrizi
,
A. A.
,
Sedighi
,
K.
,
Farhadi
,
M.
, and
Sheikholeslami
,
M.
,
2013
, “
Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Elliptical-Triangular Annulus
,”
Int. Commun. Heat Mass Transf.
,
48
, pp.
164
177
. 10.1016/j.icheatmasstransfer.2013.08.009
27.
Jourabian
,
M.
,
Darzi
,
A. A. R.
,
Akbari
,
O. A.
, and
Toghraie
,
D.
,
2020
, “
The Enthalpy-Based Lattice Boltzmann Method (LBM) for Simulation of NePCM Melting in Inclined Elliptical Annulus
,”
Phys. A Stat. Mech. its Appl.
,
548
, p.
123887
. 10.1016/j.physa.2019.123887
28.
Velusamy
,
K.
,
Garg
,
V. K.
, and
Vaidyanathan
,
G.
,
1995
, “
Fully Developed Flow and Heat Transfer in Semi-elliptical Ducts
,”
Int. J. heat fluid flow
,
16
(
2
), pp.
145
152
. 10.1016/0142-727X(94)00019-9
29.
Izadi
,
M.
,
Behzadmehr
,
A.
, and
Jalali-Vahida
,
D.
,
2009
, “
Numerical Study of Developing Laminar Forced Convection of a Nanofluid in an Annulus
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2119
2129
. 10.1016/j.ijthermalsci.2009.04.003
30.
Corcione
,
M.
,
2010
, “
Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1536
1546
. 10.1016/j.ijthermalsci.2010.05.005
31.
Semmar
,
N.
,
Tanguier
,
J. L.
, and
Rigo
,
M. O.
,
2003
, “
Specific Heat of Carboxymethyl Cellulose and Carbopol Aqueous Solutions
,”
Thermochim. Acta
,
402
(
1–2
), pp.
225
235
. 10.1016/S0040-6031(02)00611-1
32.
Tian
,
J.
,
He
,
Z.
,
Xu
,
T.
,
Fang
,
X.
, and
Zhang
,
Z.
,
2016
, “
Rheological Property and Thermal Conductivity of Multi-walled Carbon Nano-tubes-Dispersed Non-Newtonian Nano-fluids Based on an Aqueous Solution of Carboxymethyl Cellulose
,”
Exp. Heat Transf.
,
29
(
3
), pp.
378
391
. 10.1080/08916152.2014.1001919
33.
Benchabane
,
A.
, and
Bekkour
,
K.
,
2008
, “
Rheological Properties of Carboxymethyl Cellulose (CMC) Solutions
,”
Colloid Polym. Sci.
,
286
(
10
), pp.
1173
1180
. 10.1007/s00396-008-1882-2
34.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transf. an Int. J.
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
35.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transf.
,
43
(
19
), pp.
3701
3707
.
36.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al 2 O 3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
. 10.1063/1.2093936
37.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2010
, “
Brownian Motion of Nanoparticles in a Triangular Enclosure With Natural Convection
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
931
940
. 10.1016/j.ijthermalsci.2009.12.017
38.
Einstein
,
A.
,
1906
, “
A New Determination of Molecular Dimensions
,”
Ann. Phys.
,
19
(
2
), pp.
289
306
. 10.1002/andp.19063240204
39.
Shah
,
R. K.
, and
London
,
A. L.
,
2014
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
40.
Javadpour
,
A.
,
Najafi
,
M.
, and
Javaherdeh
,
K.
,
2017
, “
Experimental Study of Steady State Laminar Forced Heat Transfer of Horizontal Annulus Tube With Non-Newtonian Nanofluid
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5539
5544
. 10.1007/s12206-017-1048-6
You do not currently have access to this content.