Abstract

As a commonly used sub-Kelvin refrigeration technology, helium sorption coolers play an important role in space and ground applications. The adsorption characteristics of the porous material inside the sorption cooler at low temperature have a crucial influence on its performance. At present, the analysis and calculation of sorption coolers are mainly based on helium 4 (4He) as the working gas, and there is a lack of systematic research on the low-temperature adsorption characteristics of helium-3 (3He) and its coupling effect characteristics of temperature, pressure, and mass distribution in different components. In this paper, a molecular model of activated carbon that is similar to the actual structure was constructed, and the adsorption isobars and isosteric heat of 3He and 4He at 0.8–5 K were comparatively studied based on the grand canonical Monte Carlo (GCMC) method. Besides, the influence of adsorption characteristics of 3He and 4He on the condensation efficiency, the mass distribution after condensation equilibrium, and the self-cooling loss of the sorption cooler were analyzed. The results show that for the 3He sorption cooler, the main factor affecting the condensation efficiency is the adsorbed helium in the sorption pump, while for the 4He sorption cooler, it is the adsorbed helium and the gas in the dead volume. For both 3He and 4He sorption coolers, the condensation efficiency increases as the sorption pump temperature increases or the heat sink temperature decreases, while the self-cooling loss decreases as the heat sink temperature decreases or the operating temperature increases.

References

1.
Hubmayr
,
J.
,
Austermann
,
J. E.
,
Beall
,
J. A.
,
Becker
,
D. T.
,
Dober
,
B.
,
Duff
,
S. M.
,
Gao
,
J.
,
Hilton
,
G. C.
,
McKenney
,
C. M.
,
Ullom
,
J. N.
,
Van Lanen
,
J.
, and
Vissers
,
M. R.
,
2018
, “
Low-Temperature Detectors for CMB Imaging Arrays
,”
J. Low Temp. Phys.
,
193
(
3–4
), pp.
633
647
. 10.1007/s10909-018-2029-6
2.
Hoshino
,
A.
,
Yatsu
,
T.
,
Kunihisa
,
T.
,
Koi
,
N.
,
Notsuke
,
M.
,
Fujimoto
,
R.
,
Yamamoto
,
R.
, and
Shinozaki
,
K.
,
2012
, “
Development of Adiabatic Demagnetization Refrigerator for X-Ray Microcalorimeter Operation
,”
J. Low Temp. Phys.
,
167
(
3–4
), pp.
554
560
. 10.1007/s10909-012-0592-9
3.
Melhuish
,
S. J.
,
Martinis
,
L.
, and
Piccirillo
,
L.
,
2013
, “
A Tiltable Single-Shot Miniature Dilution Refrigerator for Astrophysical Applications
,”
Cryogenics
,
55–56
, pp.
63
67
. 10.1016/j.cryogenics.2013.03.002
4.
Shirron
,
P. J.
,
2014
, “
Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators
,”
Cryogenics
,
62
, pp.
130
139
. 10.1016/j.cryogenics.2014.03.014
5.
Zheng
,
M.
,
Quan
,
J.
,
Wang
,
N.
,
Li
,
C.
,
Zhao
,
M.
,
Wei
,
L.
, and
Liang
,
J.
,
2019
, “
A Brief Review of Dilution Refrigerator Development for Space Applications
,”
J. Low Temp. Phys.
,
197
(
1–2
), pp.
1
9
. 10.1007/s10909-019-02221-7
6.
Xi
,
X.
,
Wang
,
J.
,
Chen
,
L.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2020
, “
Progress and Challenges of Sub-Kelvin Sorption Cooler and Its Prospects for Space Application
,”
J. Low Temp. Phys.
,
199
(
5–6
), pp.
1363
1381
. 10.1007/s10909-020-02442-1
7.
Devlin
,
M. J.
,
Dicker
,
S. R.
,
Klein
,
J.
, and
Supanich
,
M. P.
,
2004
, “
A High Capacity Completely Closed-Cycle 250 mK 3He Refrigeration System Based on a Pulse Tube Cooler
,”
Cryogenics
,
44
(
9
), pp.
611
616
. 10.1016/j.cryogenics.2004.03.001
8.
Luchier
,
N.
,
Duval
,
J. M.
,
Duband
,
L.
, and
Tirolien
,
T.
,
2012
, “
Performances of the 50 mK ADR/Sorption Cooler
,”
Cryogenics
,
52
(
4–6
), pp.
152
157
. 10.1016/j.cryogenics.2012.01.029
9.
Duband
,
L.
,
Clerc
,
L.
,
Ercolani
,
E.
,
Guillemet
,
L.
, and
Vallcorba
,
R.
,
2008
, “
Herschel Flight Models Sorption Coolers
,”
Cryogenics
,
48
(
3–4
), pp.
95
105
. 10.1016/j.cryogenics.2008.03.016
10.
Klemencic
,
G. M.
,
Ade
,
P. A. R.
,
Chase
,
S.
,
Sudiwala
,
R.
, and
Woodcraft
,
A. L.
,
2016
, “
A Continuous Dry 300 mK Cooler for THz Sensing Applications
,”
Rev. Sci. Instrum.
,
87
(
4
), p.
045107
. 10.1063/1.4945691
11.
Xi
,
X.
,
Wang
,
J.
,
Chen
,
L.
,
Guo
,
L.
,
Yang
,
B.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2019
, “
Adsorption Characteristics of Helium on an Activated Carbon at 4–10 K and Its Prospective Application in 4 K-Class Regenerative Cryocoolers
,”
New Carbon Mater.
,
34
(
6
), pp.
524
532
. 10.1016/S1872-5805(19)60028-4
12.
Chen
,
L.
,
Kong
,
C.
,
Wu
,
X.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2018
, “
Specific Heat Capacities and Flow Resistance of an Activated Carbon With Adsorbed Helium as a Regenerator Material in Refrigerators
,”
New Carbon Mater.
,
33
(
1
), pp.
47
52
. 10.1016/S1872-5805(18)60326-9
13.
Vazquez
,
I.
,
Russell
,
M. P.
,
Smith
,
D. R.
, and
Radebaugh
,
R.
,
1988
, “
Helium Adsorption on Activated Carbons at Temperatures Between 4 and 76 K
,”
Adv. Cryog. Eng.
,
33
, pp.
1013
1021
.
14.
Lau
,
J.
,
Benna
,
M.
,
Devlin
,
M.
,
Dicker
,
S.
, and
Page
,
L.
,
2006
, “
Experimental Tests and Modeling of the Optimal Orifice Size for a Closed Cycle 4He Sorption Refrigerator
,”
Cryogenics
,
46
(
11
), pp.
809
814
. 10.1016/j.cryogenics.2006.08.003
15.
Aljamaan
,
H.
,
Al Ismail
,
M.
, and
Kovscek
,
A. R.
,
2017
, “
Experimental Investigation and Grand Canonical Monte Carlo Simulation of Gas Shale Adsorption From the Macro to the Nano Scale
,”
J. Nat. Gas Sci. Eng.
,
48
, pp.
119
137
. 10.1016/j.jngse.2016.12.024
16.
Li
,
M.
,
Huang
,
X.
, and
Kang
,
Z.
,
2015
, “
Hydrogen Adsorption and Desorption With 3D Silicon Nanotube-Network and Film-Network Structures: Monte Carlo Simulations
,”
J. Appl. Phys.
,
118
(
8
), p.
084303
. 10.1063/1.4929365
17.
Pobell
,
F.
,
2007
,
Matter and Methods at Low Temperatures
,
Springer-Verlag
,
Berlin
.
18.
Cheng
,
E. S.
,
Meyer
,
S. S.
, and
Page
,
L. A.
,
1996
, “
A High Capacity 0.23 K 3He Refrigerator for Balloon-Borne Payloads
,”
Rev. Sci. Instrum.
,
67
(
11
), pp.
4008
4016
. 10.1063/1.1147275
19.
Duband
,
L.
,
Clerc
,
L.
, and
Ravex
,
A.
,
2002
, “
Socool: A 300 K–0.3 K Pulse Tube/Sorption Cooler
,”
AIP Conf. Proc.
,
613
(
1
), pp.
1233
1240
. 10.1063/1.1472150
20.
Diao
,
R.
,
Zhang
,
H.
,
Zhao
,
D.
, and
Li
,
S.
,
2019
, “
CH4 and CO2 Adsorption-Induced Deformation of Carbon Slit Pores With Implications for CO2 Sequestration and Enhanced CH4 Recovery
,”
J. CO2 Util.
,
32
, pp.
66
79
. 10.1016/j.jcou.2019.03.018
21.
Lithoxoos
,
G. P.
,
Labropoulos
,
A.
,
Peristeras
,
L. D.
,
Kanellopoulos
,
N.
,
Samios
,
J.
, and
Economou
,
I. G.
,
2010
, “
Adsorption of N2, CH4, CO and CO2 Gases in Single Walled Carbon Nanotubes: A Combined Experimental and Monte Carlo Molecular Simulation Study
,”
J. Supercrit. Fluids
,
55
(
2
), pp.
510
523
. 10.1016/j.supflu.2010.09.017
22.
Albesa
,
A. G.
,
Rafti
,
M.
,
Vicente
,
J. L.
,
Sanchez
,
H.
, and
Humpola
,
P.
,
2012
, “
Adsorption of CO2/CH Mixtures in a Molecular Model of Activated Carbon Through Monte Carlo Simulations
,”
Adsorp. Sci. Technol.
,
30
(
8
), pp.
669
690
. 10.1260/0263-6174.30.8-9.669
23.
Liu
,
J.
, and
Monson
,
P. A.
,
2005
, “
Molecular Modeling of Adsorption in Activated Carbon: Comparison of Monte Carlo Simulations With Experiment
,”
Adsorption
,
11
(
1
), pp.
5
13
. 10.1007/s10450-005-1088-6
You do not currently have access to this content.