Abstract

This paper aims to study the productivity of a vertical multi-effect diffusion solar still (VMEDSS) coupled with a solar tracking system and a photovoltaic/thermal solar water heater system (PV/T-SWH). The studied system can run continuously over 24 h to have a continuous production. The experimental climatic conditions of Ksar Challala (35 deg 13′ 12.835″ N, 2 deg 19′ 2.035″ E, Altitude: 800 m) in Algeria are used in this study, for 2 days: one in summer and one in winter. The obtained results were compared with those of the vertical still oriented southward. The results show clearly the effect of the solar tracking system on the increase of the still production during summer and winter. The production percentage increase has reached: 293.01% in summer and 15.1% in winter. Feeding the still equipped with a tracking system with hot water produced by the PV/T-SWH system gives good productivities during summer and winter where the increase in production reaches, respectively, 733.76% and 415.55%. The percentage production growth of the vertical still oriented southward fed with hot water is 376.38% and 394.78% of the days of summer and winter, respectively.

References

1.
Paton
,
C.
, and
Davies
,
P.
,
2006
, “
The Seawater Greenhouse Cooling, Fresh Water and Fresh Produce From Seawater
,”
Proceedings of the 2nd ICWRAE
,
Riyad
,
Nov. 26–29, 2006
, pp.
1
16
.
2.
kumar
,
K.
,
Arjunan
,
T.
,
Pitchandi
,
P.
, and
Kumar
,
P.
,
2010
, “
Active Solar Distillation—A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
14
(
6
), pp.
1503
1526
.
3.
Eltawil
,
M.
,
Zhengming
,
Z.
, and
Yuan
,
L.
,
2009
, “
A Review of Renewable Energy Technologies Integrated With Desalination Systems
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2245
2262
.
4.
FAO
,
2010
, “
Water Desalination
for
Agricultural Use
,”
Proceedings of the NERC
,
Khartoum
,
Dec. 4–8, 2010
, pp.
3
6
.
5.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2004
, “
A Vertical Multiple-Effect Diffusion-Type Solar Still Coupled With a Heat-Pipe Solar Collector
,”
Desalination
,
160
(
2
), pp.
195
205
.
6.
Rajaseenivasan
,
T.
,
Murugavel
,
K.
,
Elango
,
T.
, and
Hansen
,
R.
,
2013
, “
A Review of Different Methods to Enhance the Productivity of the Multi-Effect Solar Still
,”
Renewable Sustainable Energy Rev.
,
17
(
13
), pp.
248
259
.
7.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2007
, “
Outdoor Experiments of a Vertical Diffusion Solar Still Coupled With a Flat Plate Reflector
,”
Desalination
,
214
(
1–3
), pp.
70
82
.
8.
Cooper
,
P. I.
, and
Appleyard
,
J. A.
,
1967
, “
The Construction and Performance of a Three Effect, Wick Type, Tilted Solar Still
,”
Sun Water
,
12
(
4
), pp.
4
8
.
9.
Elsayed
,
M. M.
,
1986
, “
Parametric Study of a Direct Solar-Operated, Multiple-Effect, Diffusion Still
,”
Sol. Wind Technol.
,
3
(
2
), pp.
95
101
.
10.
Toyama
,
S.
,
Aragaki
,
T.
,
Salah
,
H. M.
, and
Murase
,
K.
,
1987
, “
Dynamic Characteristics of a Multistage Thermal Diffusion Type Solar Distillatory
,”
Desalination
,
67
(
8
), pp.
21
32
.
11.
Ouahes
,
R. C.
, and
Le Goff
,
P. J.
,
1987
, “
High-Yield Solar Distiller of Brackish Water
,”
Desalination
,
67
(
3
), pp.
43
52
.
12.
El-sebaii
,
A. A.
,
1998
, “
Parametric Study of a Vertical Solar Still
,”
Energy Convers. Manage.
,
39
(
13
), pp.
1303
1315
.
13.
Ohshiro
,
K.
,
Nosoko
,
T.
, and
Nagata
,
T.
,
1996
, “
A Compact Solar Still Utilizing Hydrophobic Poly (Tetrafluoroethylene) Nets for Separating Neighboring Wicks
,”
Desalination
,
105
(
3
), pp.
207
217
.
14.
Bouchekima
,
B.
,
Gros
,
B.
,
Ouahes
,
R.
, and
Diboun
,
M.
,
1998
, “
Performance Study of the Sapillary Film Solar Distiller
,”
Desalination
,
116
(
2–3
), pp.
185
192
.
15.
Bouchekima
,
B.
,
2003
, “
A Small Solar Desalination Plant for the Production of Drinking Water in Remote Arid Areas of Southern Algeria
,”
Desalination
,
159
(
2
), pp.
197
204
.
16.
Byung-Ju
,
L.
,
Ga-Ram
,
L.
,
Seok-Min
,
C.
,
Kyung-Yul
,
C.
, and
Chang-Dae
,
P.
,
2020
, “
Model Optimization and Economic Analysis of a Multi-Effect Diffusion Solar Distiller
,”
Desalination
,
485
(
23
), p.
114446
.
17.
Kiatsiriroat
,
T.
,
Bhattacharya
,
S. C.
, and
Wibulswas
,
P.
,
1987
, “
Performance Analysis of Multiple Effect Vertical Still With a Flat Plate Solar Collector
,”
Sol. Wind Technol.
,
4
(
4
), pp.
451
457
.
18.
Tanaka
,
H.
,
Nosoko
,
T.
, and
Nagata
,
T.
,
2000
, “
Parametric Investigation of a Basin-Type-Multiple Effect Coupled Solar Still
,”
Desalination
,
130
(
20
), pp.
295
304
.
19.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2005
, “
A Simple and Highly Productive Solar Still: A Vertical Multiple-Effect Diffusion-Type Solar Still Coupled With a Flat-Plate Mirror
,”
Desalination
,
173
(
17
), pp.
287
300
.
20.
Tanaka
,
H.
,
Nakatake
,
Y.
, and
Tanaka
,
M.
,
2005
, “
Indoor Experiments of the Vertical Multiple-Effect Diffusion-Type Solar Still Coupled With a Heat-Pipe Solar Collector
,”
Desalination
,
177
(
1–3
), pp.
291
302
.
21.
Tanaka
,
H.
,
2009
, “
Experimental Study of Vertical Multiple-Effect Diffusion Solar Still Coupled With a Flat Plate Reflector
,”
Desalination
,
249
(
1
), pp.
34
40
.
22.
Tanaka
,
H.
,
2016
, “
Theoretical Analysis of a Vertical Multiple-Effect Diffusion Solar Still Coupled With a Tilted Wick Still
,”
Desalination
,
377
(
12
), pp.
65
72
.
23.
Zerrouki
,
M.
,
Settou
,
N.
,
Marif
,
Y.
, and
Belhadj
,
M. M.
,
2014
, “
Simulation Study of a Capillary Film Solar Still Coupled With a Conventional Solar Still in South Algeria
,”
Energy Convers. Manage.
,
85
(
19
), pp.
112
119
.
24.
Reddy
,
K. S.
, and
Sharon
,
H.
,
2016
, “
Active Multi-Effect Vertical Solar Still, Mathematical Modeling, Performance Investigation and Enviro-Economic Analyses
,”
Desalination
,
395
(
21
), pp.
99
120
.
25.
Nishikawa
,
H.
,
Tsuchiya
,
T.
,
Narasaki
,
Y.
,
Kamiya
,
I.
, and
Sato
,
H.
,
1998
, “
Triple Effect Evacuated Solar Still System for Getting Fresh Water From Seawater
,”
Appl. Therm. Eng.
,
18
(
11
), pp.
1067
1075
.
26.
Mahkamov
,
K.
, and
Akhatov
,
J. S.
,
2008
, “
Experimental Study of the Performance of Multi- Effect Solar Thermal Water Desalination System
,”
Appl. Sol. Energy
,
44
(
1
), pp.
31
40
.
27.
Chong
,
T. L.
,
Huang
,
B. J.
,
Wu
,
P. H.
, and
Kao
,
Y. C.
,
2014
, “
Multiple-Effect Diffusion Solar Still Coupled With a Vacuum-Tube Collector and Heat Pipe
,”
Desalination
,
347
(
18
), pp.
66
76
.
28.
Houa
,
J.
,
Yanga
,
J.
,
Changc
,
Z.
,
Zhengd
,
H.
, and
Sue
,
Y.
,
2018
, “
Effect of Different Carrier Gases on Productivity Enhancement of a Novel Multi-Effect Vertical Concentric Tubular Solar Brackish Water Desalination Device
,”
Desalination
,
432
(
10
), pp.
72
80
.
29.
Kaushal
,
A. K.
,
Mittal
,
M. K.
, and
Gangacharyulu
,
D.
,
2017
, “
An Experimental Study of Floating Wick Basin Type Vertical Multiple Effect Diffusion Solar Still With Waste Heat Recovery
,”
Desalination
,
414
(
17
), pp.
35
45
.
30.
Ju Lim
,
B.
,
Yu
,
S. S.
,
Chung
,
K. Y.
, and
Park
,
C. D.
,
2018
, “
Numerical Analysis of the Performance of a Tiltable Multi-Effect Solar Distiller
,”
Desalination
,
435
(
13
), pp.
23
34
.
31.
Yeo
,
S. D.
,
Lim
,
B. J.
,
Lee
,
G. R.
, and
Park
,
C. D.
,
2019
, “
Experimental Study of Effects of Different Heat Sources on the Performance of the Hybrid Multiple-Effect Diffusion Solar Still
,”
Sol. Energy
,
193
(
16
), pp.
324
334
.
32.
Tripathi
,
R.
, and
Tiwari
,
G. N.
,
2004
, “
Performance Evaluation of a Solar Still by Using the Concept of Solar Fractionation
,”
Desalination
,
169
(
1
), pp.
69
80
.
33.
Duffie
,
J. A.
, and
Beckmann
,
W. A.
,
1991
,
Solar Engineering of Thermal Process
,
John Wiley and Sons
,
NY
.
34.
Tanaka
,
H.
, and
Nakatake
,
Y.
,
2007
, “
Numerical Analysis of the Vertical Multiple-Effect Diffusion Solar Still Coupled With a Flat Plate Reflector: Optimum Reflector Angle and Optimum Orientation of the Still at Various Seasons and Locations
,”
Desalination
,
207
(
22
), pp.
167
178
.
35.
Fanney
,
A. H.
, and
Dougherty
,
B. P.
,
1996
, “
The Thermal Performance of Residential Electric Water Heaters Subjected to Various Off-Peak Schedules
,”
ASME J. Sol. Energy
,
118
(
2
), pp.
73
80
.
36.
Fanney
,
A. H.
, and
Dougherty
,
B. P.
,
1997
, “
A Photovoltaic Solar Water Heating System
,”
ASME J Sol. Energy
,
119
(
2
), pp.
126
133
.
37.
Sohani
,
A.
,
Hoseinzadeh
,
S.
, and
Berenjkar
,
K.
,
2021
, “
Experimental Analysis of Innovative Designs for Solar Still Desalination Technologies; An In-Depth Technical and Economic Assessment
,”
J. Energy Storage
,
33
(
4
), pp.
96
108
.
38.
Nezhad
,
M. E. Y.
, and
Hoseinzadeh
,
S.
,
2017
, “
Mathematical Modelling and Simulation of a Solar Water Heater for an Aviculture Unit Using MATLAB/SIMULINK
,”
J. Renewable Sustainable Energy
,
9
(
3
), pp.
54
65
.
39.
Malik
,
M. A. S.
,
Tiwari
,
G. N.
,
Kumar
,
A.
, and
Sodha
,
M. S.
,
1985
,
Solar Distillation
,
Pergamon Press
,
Oxford
.
40.
Elango
,
C.
,
Gunasekaran
,
N.
, and
Sampathkumar
,
K.
,
2015
, “
Thermal Models of Solar Still—A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
47
(
11
), pp.
856
911
.
41.
Tsilingiris
,
P. T.
,
2012
, “
Combined Heat and Mass Transfer Analyses in Solar Distillation Systems—The Restrictive Conditions and a Validity Range Investigation
,”
Sol. Energy
,
86
(
11
), pp.
3288
3300
.
42.
Tsilingiris
,
P. T.
,
2013
, “
The Application and Experimental Validation of a Heat and Mass Transfer Analogy Model for the Prediction of Mass Transfer in Solar Distillation Systems
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
422
428
.
43.
Boubekri
,
M.
,
Chaker
,
A.
, and
Cheknane
,
A.
,
2013
, “
Modeling and Simulation of the Continuous Production of an Improved Solar Still Coupled With a Photovoltaic/Thermal Solar Water Heater System
,”
Desalination
,
331
(
16
), pp.
6
15
.
44.
Wattmuf
,
J. H.
,
Charters
,
W. W. S.
, and
Proctor
,
D.
,
1977
, “
Solar and Wind Induced External Coefficients for Solar Collectors
,”
Compless
,
2
(
1
), pp.
56
68
.
45.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Advances in Heat Transfer
,
Academic Press
,
NY
.
46.
Inaba
,
H.
,
1984
, “
Experimental Study of Natural Convection in an Inclined Air Layer
,”
Int. J. Heat Mass Transfer
,
27
(
8
), pp.
1127
1139
.
47.
Tsilingiris
,
P. T.
,
2007
, “
The Influence of Binary Mixture Thermophysical Properties in the Analysis of Heat and Mass Transfer Processes in Solar Distillation Systems
,”
Sol. Energy
,
81
(
12
), pp.
1482
1491
.
48.
Tsilingiris
,
P. T.
,
2008
, “
Thermophysical and Transport Properties of Humid Air at Temperature Range Between 0 and 100
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1098
1110
.
49.
Tsilingiris
,
P. T.
,
2010
, “
Modeling Heat and Mass Transport Phenomena at Higher Temperatures in Solar Distillation Systems—The Chilton–Colburn Analogy
,”
Sol. Energy
,
84
(
2
), pp.
308
317
.
50.
Hollands
,
K. G. T.
,
Unny
,
S. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convective Heat Transfer Across Inclined Air Layers
,”
J. Heat Transfer
,
98
(
2
), pp.
189
202
.
51.
Tiwari
,
G. N.
,
Dimri
,
V.
,
Singh
,
U.
,
Chel
,
A.
, and
Sarkar
,
B.
,
2007
, “
Comparative Thermal Performance Evaluation of an Active Solar Distillation System
,”
Int. J. Energy Res.
,
31
(
15
), pp.
1465
1482
.
52.
Kumar
,
S.
, and
Tiwari
,
G. N.
,
1999
, “
Triple Basin Active Solar Still
,”
Int. J. Energy Res.
,
23
(
5
), pp.
529
542
.
53.
Xiong
,
J.
,
Xie
,
G.
, and
Zheng
,
H.
,
2013
, “
Experimental and Numerical Study on a New Multi-Effect Solar Still With Enhanced Condensation Surface
,”
Energy Convers. Manage.
,
73
(
4
), pp.
176
185
.
54.
Tanaka
,
H.
,
Nosoko
,
T.
, and
Nagatta
,
T.
,
2000
, “
A Highly Productive Basin-Type-Multiple-Effect Coupled Solar Still
,”
Desalination
,
130
(
3
), pp.
279
283
.
55.
Tanaka
,
H.
, and
Park
,
C. D.
,
2010
, “
Distillation Utilizing Waste Heat From a Portable Electric Generator
,”
Desalination
,
258
(
1–3
), pp.
136
142
.
You do not currently have access to this content.