Abstract

Droplets bouncing off cold surfaces before being frozen is one way to achieve anti-icing, in which process superhydrophobic surfaces have been proven to play an important role. By using template-assisted method, three types of copper nanowired superhydrophobic surfaces (NSHSs) with mainly two morphologies (aggregated and upright) are fabricated. CuO nanograssed superhydrophobic surface (SHS) and copper smooth hydrophobic surface (HS) are also fabricated as a comparison. Compared with smooth HS and nanograssed SHS, all NSHSs exhibit better performance in repelling impacting droplet. In detail, on three types of NSHSs with temperatures ranging from 20 °C to −20 °C, impacting droplets can totally rebound. Among the three types, nanowires aggregated most exhibit the best water-repellency performance. The different performances among the five surfaces are due to surface temperature and surface morphology parameters, including micro/nano-size and surface roughness.

References

1.
Carriveau
,
R.
,
Edrisy
,
A.
,
Cadieux
,
P.
, and
Mailloux
,
R.
,
2012
, “
Ice Adhesion Issues in Renewable Energy Infrastructure
,”
J. Adhes. Sci. Technol.
,
26
(
4–5
), pp.
447
461
. 10.1163/016942411X574592
2.
Hochart
,
C.
,
Fortin
,
G.
,
Perron
,
J.
, and
Ilinca
,
A.
,
2008
, “
Wind Turbine Performance Under Icing Conditions
,”
Wind Energy
,
11
(
4
), pp.
319
333
. 10.1002/we.258
3.
Lynch
,
F. T.
, and
Khodadoust
,
A.
,
2001
, “
Effects of Ice Accretions on Aircraft Aerodynamics
,”
Prog. Aerosp. Sci.
,
37
(
8
), pp.
669
767
. 10.1016/S0376-0421(01)00018-5
4.
Meuler
,
A. J.
,
Smith
,
J. D.
,
Varanasi
,
K. K.
,
Mabry
,
J. M.
,
Mckinley
,
G. H.
, and
Cohen
,
R. E.
,
2010
, “
Relationships Between Water Wettability and Ice Adhesion
,”
ACS Appl. Mater. Interfaces
,
2
(
11
), pp.
3100
3110
. 10.1021/am1006035
5.
Tanmoy
,
M.
,
Carlo
,
A.
,
Tiwari
,
M. K.
,
Adrian
,
M.
,
Zulkufli
,
I.
,
Philippe
,
S.
, and
Dimos
,
P.
,
2014
, “
Supercooled Water Drops Impacting SuperhydrophobicTextures
,”
Langmuir
,
30
(
36
), pp.
10855
10861
. 10.1021/la502675a
6.
Schutzius
,
T. M.
,
Jung
,
S.
,
Maitra
,
T.
,
Eberle
,
P.
,
Antonini
,
C.
,
Stamatopoulos
,
C.
, and
Poulikakos
,
D.
,
2015
, “
Physics of Icing and Rational Design of Surfaces with Extraordinary Icephobicity
,”
Langmuir
,
31
(
17
), pp.
4807
4821
. 10.1021/la502586a
7.
Rahul
,
R.
,
Konstantin
,
S.
, and
Michael
,
N.
,
2015
, “
Dynamics of Droplet Impact on Hydrophobic/Icephobic Concrete with the Potential for Superhydrophobicity
,”
Langmuir
,
31
(
4
), pp.
1437
1444
. 10.1021/la504626f
8.
Ramachandran
,
R.
,
Kozhukhova
,
M.
,
Sobolev
,
K.
, and
Nosonovsky
,
M.
,
2016
, “
Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete
,”
Entropy
,
18
(
4
), p.
132
. 10.3390/e18040132
9.
Girard
,
H. L.
,
Soto
,
D.
, and
Varanasi
,
K. K.
,
2019
, “
Waterbowls: Reducing Impacting Droplet Interactions by Momentum Redirection
,”
ACS Nano
,
13
(
7
), pp.
7729
7735
. 10.1021/acsnano.9b01301
10.
Khojasteh
,
D.
,
Kazerooni
,
N. M.
,
Salarian
,
S.
, and
Kamali
,
R.
,
2016
, “
Droplet Impact on Superhydrophobic Surfaces: A Review of Recent Developments
,”
J. Ind. Eng. Chem.
,
42
, pp.
1
14
. 10.1016/j.jiec.2016.07.027
11.
Shen
,
Y.
,
Tao
,
J.
,
Tao
,
H.
,
Chen
,
S.
,
Pan
,
L.
, and
Wang
,
T.
,
2015
, “
Approaching the Theoretical Contact Time of a Bouncing Droplet on the Rational Macrostructured Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
107
(
11
), p.
111604
. 10.1063/1.4931095
12.
Peng
,
C.
,
Chen
,
Z.
, and
Tiwari
,
M. K.
,
2018
, “
All-organic Superhydrophobic Coatings With Mechanochemical Robustness and Liquid Impalement Resistance
,”
Nat. Mater.
,
17
(
4
), pp.
355
360
. 10.1038/s41563-018-0044-2
13.
Lv
,
C.
,
Hao
,
P.
,
Zhang
,
X.
, and
Feng
,
H.
,
2016
, “
Drop Impact upon Superhydrophobic Surfaces With Regular and Hierarchical Roughness
,”
Appl. Phys. Lett.
,
108
(
14
), p.
141602
. 10.1063/1.4945662
14.
Guo
,
C.
,
Maynes
,
D.
,
Crockett
,
J.
, and
Zhao
,
D.
,
2019
, “
Heat Transfer to Bouncing Droplets on Superhydrophobic Surfaces
,”
Int. J. Heat Mass Transf.
,
137
, pp.
857
867
. 10.1016/j.ijheatmasstransfer.2019.03.103
15.
Gary
,
R.
, and
Rita
,
T.
,
2010
, “
Effect of Superhydrophobicity on Impinging Droplet Heat Transfer
,”
Proc. IHTC
,
14
(
6
), pp.
741
746
.
16.
Alizadeh
,
A.
,
Bahadur
,
V.
,
Sheng
,
Z.
,
Wen
,
S.
,
Li
,
R.
,
Ruud
,
J.
,
Yamada
,
M.
,
Ge
,
L.
,
Dhinojwala
,
A.
, and
Sohal
,
M. S.
,
2012
, “
Temperature Dependent Droplet Impact Dynamics on Flat and Textured Surfaces
,”
Appl. Phys. Lett.
,
100
(
11
), p.
111601
. 10.1063/1.3692598
17.
Yang
,
G.
,
Guo
,
K.
, and
Ning
,
L.
,
2011
, “
Freezing Mechanism of Supercooled Water Droplet Impinging on Metal Surfaces
,”
Int. J. Refrig.
,
34
(
8
), pp.
2007
2017
. 10.1016/j.ijrefrig.2011.07.001
18.
Jin
,
Z.
,
Wang
,
Z.
,
Sui
,
D.
, and
Yang
,
Z.
,
2016
, “
The Impact and Freezing Processes of a Water Droplet on Different Inclined Cold Surfaces
,”
Int. J. Heat Mass Transfer
,
97
, pp.
211
223
. 10.1016/j.ijheatmasstransfer.2016.02.024
19.
Lidiya
,
M.
,
Benjamin
,
H.
,
Vaibhav
,
B.
,
Ashley Taylor
,
J.
,
Tom
,
K.
, and
Joanna
,
A.
,
2010
, “
Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets
,”
ACS Nano
,
4
(
12
), pp.
7699
7707
. 10.1021/nn102557p
20.
Deng
,
T.
,
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Keimel
,
C.
,
Stein
,
J.
, and
Blohm
,
M.
,
2009
, “
Nonwetting of Impinging Droplets on Textured Surfaces
,”
Appl. Phys. Lett.
,
94
(
13
), p.
133109
. 10.1063/1.3110054
21.
Zhang
,
R.
,
Hao
,
P.
,
Zhang
,
X.
, and
He
,
F.
,
2018
, “
Supercooled Water Droplet Impact on Superhydrophobic Surfaces with Various Roughness and Temperature
,”
Int. J. Heat Mass Transfer
,
122
, pp.
395
402
. 10.1016/j.ijheatmasstransfer.2018.01.076
22.
Wen
,
R.
,
Li
,
Q.
,
Wu
,
J.
,
Wu
,
G.
,
Wang
,
W.
,
Chen
,
Y.
, and
Yang
,
R.
,
2017
, “
Hydrophobic Copper Nanowires for Enhancing Condensation Heat Transfer
,”
Nano Energy
,
33
, pp.
177
183
. 10.1016/j.nanoen.2017.01.018
23.
Stow
,
C. D.
, and
Hadfield
,
M. G.
,
1981
, “
An Experimental Investigation of Fluid Flow Resulting From the Impact of a Water Drop With an Unyielding Dry Surface
,”
Proc. R. Soc. B
,
373
(
1755
), pp.
419
441
.
24.
Richard
,
D.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2002
, “
Surface Phenomena: Contact Time of a Bouncing Drop
,”
Nature
,
417
(
6891
), p.
811
. 10.1038/417811a
25.
Khedir
,
K. R.
,
Kannarpady
,
G. K.
,
Ishihara
,
H.
,
Woo
,
J.
,
Asar
,
M. P.
,
Ryerson
,
C.
, and
Biris
,
A. S.
,
2013
, “
Temperature-Dependent Bouncing of Super-Cooled Water on Teflon-Coated Superhydrophobic Tungsten Nanorods
,”
Appl. Surf. Sci.
,
279
, pp.
76
84
. 10.1016/j.apsusc.2013.04.038
26.
Hai
,
L.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2015
, “
Influence of Solidification on the Impact of Supercooled Water Drops Onto Cold Surfaces
,”
Exp. Fluids
,
56
(
6
), p.
133
. 10.1007/s00348-015-1999-2
27.
Dash
,
S.
,
Alt
,
M. T.
, and
Garimella
,
S. V.
,
2012
, “
Hybrid Surface Design for Robust Superhydrophobicity
,”
Langmuir
,
28
(
25
), pp.
9606
9615
. 10.1021/la301743p
28.
Engel
,
O. G.
,
1955
, “
Waterdrop Collisions With Solid Surfaces
,”
J. Res. Natl. Bur. Stand.
,
54
(
5
), pp.
281
298
. 10.6028/jres.054.033
29.
Dear
,
J. P.
, and
Field
,
J. E.
,
1988
, “
A Study of the Collapse of Arrays of Cavities
,”
J. Fluid Mech.
,
190
, pp.
409
425
. 10.1017/S0022112088001387
30.
Tanmoy
,
M.
,
Tiwari
,
M. K.
,
Carlo
,
A.
,
Philippe
,
S.
,
Stefan
,
J.
,
Patric
,
E.
, and
Dimos
,
P.
,
2014
, “
On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures Below the Freezing Temperature
,”
Nano Lett.
,
14
(
1
), pp.
172
182
. 10.1021/nl4037092
31.
Kulinich
,
S. A.
, and
Farzaneh
,
M.
,
2009
, “
How Wetting Hysteresis Influences Ice Adhesion Strength on Superhydrophobic Surfaces
,”
Langmuir
,
25
(
16
), pp.
8854
8856
. 10.1021/la901439c
You do not currently have access to this content.