Abstract

The heat transfer characteristics and kinetics of Camellia oleifera seeds under hot-air drying were investigated at different temperatures (40, 60, and 80 °C) and loading densities (0.92, 1.22, and 1.52 g/cm2) with a constant air velocity of 1 m/s. Twelve common drying kinetic models were selected to fit the experimental data. The most suitable model was chosen to describe the hot-air drying process of C. oleifera seeds and help in its optimization. The results showed that the drying temperature has a significant influence on the hot-air drying characteristics of C. oleifera seeds. As the drying air temperature increases, the drying time decreases. The effect of the loading density on the drying characteristics of C. oleifera seeds is much smaller than that of temperature. With the increase in the loading density, the drying time slightly increases. The hot-air drying curve of C. oleifera seeds consists of a very short acceleration rate period at the beginning and a long falling rate period, indicating that the drying of C. oleifera seeds is mainly controlled by the diffusion of moisture inside the material. An effective moisture diffusion coefficient of C. oleifera seeds was estimated to range from 0.81256 × 10−9 to 3.28496 × 10−9 m2/s within the temperature range studied. The average activation energy was 28.27979 kJ/mol. The logarithmic model was found to be the best model to describe the kinetics of hot-air drying of C. oleifera seeds.

References

1.
Wang
,
X.
,
Zeng
,
Q.
,
Contreras
,
M. M.
, and
Wang
,
L. J.
,
2017
, “
Profiling and Quantification of Phenolic Compounds in Camellia Seed Oils: Natural Tea Polyphenols in Vegetable oil
,”
Food Res. Int.
,
102
(
9
), pp.
184
194
. 10.1016/j.foodres.2017.09.089
2.
Lee
,
S. Y.
,
Jung
,
M. Y.
, and
Yoon
,
S. H.
,
2014
, “
Optimization of the Refining Process of Camellia Seed oil for Edible Purposes
,”
Food Sci. Biotechnol.
,
23
(
1
), pp.
65
73
. 10.1007/s10068-014-0009-4
3.
Hu
,
B.
,
Li
,
C.
,
Qin
,
W.
,
Zhang
,
Z. Q.
,
Liu
,
Y. T.
,
Zhang
,
Q.
,
Liu
,
A. P.
,
Jia
,
R. Y.
,
Yin
,
Z. Q.
,
Han
,
X. F.
,
Zhu
,
Y. D.
,
Luo
,
Q. Y.
, and
Liu
,
S. X.
,
2019
, “
A Method for Extracting oil From tea (Camelia sinenis) Seed by Microwave in Combination With Ultrasonic and Evaluation of its Quality
,”
Ind. Crops Prod.
,
131
(
5
), pp.
234
242
. 10.1016/j.indcrop.2019.01.068
4.
Shi
,
L.
,
Gu
,
Y.
,
Wu
,
D.
,
Wu
,
X.
,
Grierson
,
D.
,
Tu
,
Y.
, and
Wu
,
Y.
,
2019
, “
Hot Air Drying of Tea Flowers: Effect of Experimental Temperatures on Drying Kinetics, Bioactive Compounds and Quality Attributes
,”
Int. J. Food Sci. Technol.
,
54
(
2
), pp.
526
535
. 10.1111/ijfs.13967
5.
Doymaz
,
I.
,
2007
, “
Air Drying Characteristics of Tomatoes
,”
J. Food Eng.
,
78
(
4
), pp.
1291
1297
. 10.1016/j.jfoodeng.2005.12.047
6.
Szadzinska
,
J.
,
Lechtanska
,
J.
,
Pashminehazar
,
R.
,
Kharaghani
,
A.
, and
Tsotsas
,
E.
,
2019
, “
Microwave- and Ultrasound-Assisted Convective Drying of Raspberries: Drying Kinetics and Microstructural Changes
,”
Drying Technol.
,
37
(
1
), pp.
1
12
. 10.1080/07373937.2018.1433199
7.
Zhou
,
X.
,
Liu
,
L.
, and
Fu
,
P.
,
2018
, “
Effects of Infrared Radiation Drying and Heat Pump Drying Combined with Tempering on the Quality of Long-Grain Paddy Rice
,”
Int. J. Food Technol.
,
53
(
11
), pp.
2448
2456
. 10.1111/ijfs.13834
8.
Patel
,
V. K.
,
Reed
,
F. K.
,
Kisner
,
R.
,
Peng
,
C.
,
Moghaddam
,
S.
, and
Momen
,
A. M.
,
2018
, “
Novel Experimental Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021008
. 10.1115/1.4041596
9.
Elmizadeh
,
A.
,
Shahedi
,
M.
, and
Hamdami
,
N.
,
2017
, “
Comparison of Electrohydrodynamic and hot-air Drying of the Quince Slices
,”
Innovative Food Sci. Emerging Technol.
,
43
(
10
), pp.
130
135
. 10.1016/j.ifset.2017.07.030
10.
Bai-Ngew
,
S.
,
Therdthai
,
N.
,
Dhamvithee
,
P.
, and
Zhou
,
W.
,
2015
, “
Effect of Microwave Vacuum Drying and Hot Air Drying on the Physicochemical Properties of Durian Flour
,”
Int J. Food Technol.
,
50
(
2
), pp.
305
312
. 10.1111/ijfs.12651
11.
Wang
,
F. H.
,
Ding
,
Y. C.
,
Chen
,
P. X.
,
Xie
,
W. J.
,
Li
,
X. Q.
, and
Yang
,
D. Y.
,
2018
, “
Investigation on Hot-air Drying of Camellia oleifera Seeds
,”
Trans. Chin. Soc. Agric. Mach.
,
49
(
S1
), pp.
426
432
.
12.
Li
,
X.
,
Wu
,
X. Y.
,
Bi
,
J. F.
,
Liu
,
X.
,
Li
,
X.
, and
Guo
,
C.
,
2019
, “
Polyphenols Accumulation Effects on Surface Color Variation in Apple Slices Hot Air Drying Process
,”
LWT-Food Sci. Technol.
,
108
(
7
), pp.
421
428
. 10.1016/j.lwt.2019.03.098
13.
Nakagawa
,
K.
,
Tamura
,
A.
, and
Adachi
,
S.
,
2018
, “
Optimization of Food Dye (Betanin) Retention During Hot Air Drying: Design Space Calculation With Consideration of Reaction and Substrate Transfer Kinetics
,”
Drying Technol.
,
36
(
15
), pp.
1920
1929
. 10.1080/07373937.2018.1463538
14.
Wang
,
W.
,
Jung
,
J.
,
McGorrin
,
R. J.
, and
Zhao
,
Y.
,
2018
, “
Investigation of the Mechanisms and Strategies for Reducing Shell Cracks of Hazelnut (Corylus avellana L.) in Hot-Air Drying
,”
LWT-Food Sci. Technol.
,
98
(
12
), pp.
252
259
. 10.1016/j.lwt.2018.08.053
15.
Lu
,
Z. G.
,
Ma
,
C.
,
Zhao
,
Z. Y.
,
Jia
,
W.
, and
Wang
,
M.
,
2016
, “
Effects of Hot Air Drying Time on Properties of Biomass Brick
,”
Appl. Therm. Eng.
,
109
(
25
), pp.
487
496
. 10.1016/j.applthermaleng.2016.08.105
16.
Engin
,
D.
, and
Yahya
,
T.
,
2012
, “
Thin-layer Drying of Tomato (Lycopersicum esculentum Mill. cv. Rio Grande) Slices in a Convective Hot Air Dryer
,”
Heat Mass Transfer
,
48
(
5
), pp.
841
847
. 10.1007/s00231-011-0942-1
17.
Defendi
,
R. O.
,
Paraiso
,
P. R.
, and
Jorge
,
L. M. M.
,
2016
, “
The Air Temperature Modulation Impact on the Drying of Soybeans in a Fixed bed
,”
Drying Technol.
,
34
(
5
), pp.
516
529
. 10.1080/07373937.2015.1060998
18.
Wu
,
X. H.
,
Long
,
T.
,
Wang
,
Z. F.
, and
Lan
,
W. T.
,
2018
, “
Drying Characteristics and Models for Heat Pump Drying of Camellia oleifera Seed
,”
J. Chin. Cereals Oils Assoc.
,
33
(
1
), pp.
111
117
.
19.
Zhang
,
J. P.
, and
Zhao
,
Z. N.
,
2017
, “
Heat and Mass Transfer Characteristics and Model of Rapeseed (Brassica rapus) Fluidized-bed Drying With Constant Drying Rate
,”
Trans. Chin. Soc. Agric. Eng.
,
33
(
13
), pp.
287
295
.
20.
Uribe
,
E.
,
Lemus-Mondaca
,
R.
,
Vega-Galvez
,
A.
,
Zamorano
,
M.
,
Quispe-Fuentes
,
I.
,
Pasten
,
A.
, and
Di Scala
,
K.
,
2014
, “
Influence of Process Temperature on Drying Kinetics, Physicochemical Properties and Antioxidant Capacity of the Olive-Waste Cake
,”
Food Chem.
,
147
(
6
), pp.
170
176
. 10.1016/j.foodchem.2013.09.121
21.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
Clarendon Press
,
Oxford
.
22.
Akgun
,
N. A.
, and
Doymaz
,
I.
,
2005
, “
Modelling of Olive Cake Thin-Layer Drying Process
,”
J. Food Eng.
,
68
(
4
), pp.
455
461
. 10.1016/j.jfoodeng.2004.06.023
23.
Wang
,
Z. F.
,
Sun
,
J. H.
,
Liao
,
X. J.
,
Chen
,
F.
,
Zhao
,
G.
,
Wu
,
J.
, and
Hu
,
X.
,
2007
, “
Mathematical Modelling on Hot Air Drying of Thin Layer Apple Pomace
,”
Food Res. Int.
,
40
(
1
), pp.
39
46
. 10.1016/j.foodres.2006.07.017
24.
Aral
,
S.
, and
Bese
,
A. V.
,
2016
, “
Convective Drying of Hawthorn Fruit (Crataegus spp.): Effect of Experimental Parameters on Drying Kinetics, Color, Shrinkage, and Rehydration Capacity
,”
Food Chem.
,
210
(
11
), pp.
577
584
. 10.1016/j.foodchem.2016.04.128
25.
Keneni
,
Y. G.
,
Hvoslef-Eide
,
A. K.
(Trine)
, and
Marchetti
,
J. M.
,
2019
, “
Mathematical Modelling of the Drying Kinetics of Jatropha curcas L. Seeds
,”
Ind. Crops Prod.
,
132
(
6
), pp.
12
20
. 10.1016/j.indcrop.2019.02.012
26.
Tan
,
Y.
,
Zhao
,
Y.
,
Hu
,
H.
,
Fu
,
N.
,
Zhang
,
C. J.
,
Zhang
,
H.
, and
Dai
,
X. F.
,
2019
, “
Drying Kinetics and Particle Formation of Potato Power During Spray Drying Probed by Microrheology and Single Droplet Drying
,”
Food Res. Int.
,
116
(
2
), pp.
483
491
. 10.1016/j.foodres.2018.08.064
27.
Doymaz
,
I.
,
2012
, “
Evaluation of Some Thin-Layer Drying Models of Persimmon Slices (Diospyros kaki L.)
,”
Energy Convers. Manage.
,
56
(
4
), pp.
199
205
. 10.1016/j.enconman.2011.11.027
28.
Kaleta
,
A.
, and
Gornicki
,
K.
,
2010
, “
Evaluation of Drying Models of Apple (var. Mclntosh) Dried in a Convective Dryer
,”
Int. J. Food Sci. Technol.
,
45
(
5
), pp.
891
898
. 10.1111/j.1365-2621.2010.02230.x
You do not currently have access to this content.