Abstract

In this paper, the radiating effect of working gas on thermal performance of plane solar heaters is investigated. In the numerical simulation of gas flow, the continuity and momentum equations are solved using the finite volume method (FVM) in which the pressure–velocity coupling is handled by the SIMPLE algorithm. To obtain the temperature distribution, the conservation of energy in the fluid and solid media is solved by the finite difference technique. The distribution of radiating intensity which is needed to calculate the radiative term in the gas energy equation is computed by numerical solution of the radiative transfer equation (RTE) using the discrete ordinate method (DOM). The effect of the variation of different parameters on the predicted thermal efficiency of plane solar heater is investigated by presenting the performance plot. The obtained results show that when the gas medium participates in radiation, the gas temperature at the outlet section increases considerably, especially at high optical thicknesses. Also, the temperature difference between the absorber plate and flowing gas decreases, and more uniform temperature distribution takes place inside the solar heater, which leads to a considerable increase in thermal efficiency. Comparison between the present numerical results and the experimental data published in literature shows good agreement.

References

1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
. 10.1016/j.pecs.2004.02.001
2.
Ekechukwu
,
O. V.
, and
Norton
,
B.
,
1999
, “
Review of Solar-Energy Drying Systems II: An Overview of Solar Drying Technology
,”
Energy Convers. Manag.
,
40
(
6
), pp.
615
655
. 10.1016/S0196-8904(98)00093-4
3.
Tyagia
,
V. V.
,
Panwarb
,
N. L.
,
Rahima
,
N. A.
, and
Richa
,
K.
,
2012
, “
Review on Solar Air Heating System With and Without Thermal Energy Storage System
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
2289
2303
. 10.1016/j.rser.2011.12.005
4.
Alkilani
,
M. M.
,
Sopian
,
K.
,
Alghoul
,
M. A.
,
Sohif
,
M.
, and
Ruslan
,
M. H.
,
2011
, “
Review of Solar Air Collectors With Thermal Storage Units
,”
Renew. Sustain. Energy Rev.
,
15
(
3
), pp.
1476
1490
. 10.1016/j.rser.2010.10.019
5.
Chamoli
,
S.
,
Chauhan
,
R.
,
Thakur
,
N. S.
, and
Saini
,
J. S.
,
2012
, “
A Review of the Performance of Double Pass Solar Air Heater
,”
Renew. Sustain. Energy Rev.
,
16
(
1
), pp.
481
492
. 10.1016/j.rser.2011.08.012
6.
Chabane
,
F.
,
Moummi
,
N.
, and
Benramache
,
S.
,
2014
, “
Experimental Study of Heat Transfer and Thermal Performance With Longitudinal Fins of Solar Air Heater
,”
J. Adv. Res.
,
5
(
2
), pp.
183
192
. 10.1016/j.jare.2013.03.001
7.
Dhiman
,
P.
,
Thakur
,
N. S.
, and
Chauhan
,
S. R.
,
2012
, “
Thermal and Thermo-Hydraulic Performance of Counter and Parallel Flow Packed Bed Solar Air Heaters
,”
Renew. Energy
,
46
, pp.
259
268
. 10.1016/j.renene.2012.03.032
8.
Gao
,
W.
,
Lin
,
W.
,
Liu
,
T.
, and
Xia
,
C.
,
2007
, “
Analytical and Experimental Studies on the Thermal Performance of Cross-Corrugated and Flat-Plate Solar Air Heaters
,”
Appl. Energy
,
84
(
4
), pp.
425
441
. 10.1016/j.apenergy.2006.02.005
9.
Ravi
,
R. K.
, and
Saini
,
R. P.
,
2016
, “
A Review on Different Techniques Used for Performance Enhancement of Double Pass SAHs
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
941
952
. 10.1016/j.rser.2015.12.004
10.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Thermal Performance of Double Pass Packed Bed Solar Air Heaters—A Comprehensive Review Article
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
1010
1031
. 10.1016/j.rser.2015.09.058
11.
Singh
,
S.
,
2020
, “
’Experimental and Numerical Investigations of a Single and Double Pass Porous Serpentine Wavy Wiremesh Packed Bed Solar Air Heater
,”
Renew. Energy
,
145
, pp.
1361
1387
. 10.1016/j.renene.2019.06.137
12.
Singh
,
S.
,
Laxmikant
,
D.
, and
Subhash
,
C.
,
2019
, “
Experimental Investigation of a Double Pass Converging Finned Wire Mesh Packed Bed Solar Air Heater
,”
J. Energy Storage
,
21
, pp.
713
723
. 10.1016/j.est.2019.01.003
13.
Atashafrooz
,
M.
, and
Nassab
,
S. A. G.
,
2012
, “
Combined Heat Transfer of Radiation and Forced Convection Flow of Participating Gases in a Three-Dimensional Recess
,”
J. Mech. Sci. Technol.
,
26
(
10
), pp.
3357
3368
. 10.1007/s12206-012-0804-x
14.
Nia
,
F. M.
,
Nassab
,
S. A. G.
, and
Ansari
,
A. B.
,
2018
, “
Transient Combined Natural Convection and Radiation in a Double Space Cavity With Conducting Walls
,”
Int. J. Therm. Sci.
,
128
, pp.
94
104
. 10.1016/j.ijthermalsci.2018.01.021
15.
Nia
,
F. M.
, and
Nassab
,
S. A. G.
,
2017
, “
Conjugate Heat Transfer Study of Combined Radiation and Forced Convection Turbulent Separated Flow
,”
Int. J. Nonlin. Sci. Num.
,
18
(
1
), pp.
29
39
. 10.1515/ijnsns-2015-0134
16.
Ansari
,
A. B.
, and
Nassab
,
S. A. G.
,
2011
, “
Numerical Analysis of Laminar Forced Convection Flow of a Radiating Gas Over an Inclined Forward Facing Step
,”
Int. Rev. Mech. Eng.
,
5
(
1
), pp.
120
127
.
17.
Ansari
,
A. B.
, and
Nassab
,
S. A. G.
,
2010
, “
Thermal Characteristics of Convective Flows Encountered in a 2-D Backward Facing Step Under the Effect of Radiative Heat Transfer
,”
Int. Rev. Mech. Eng.
,
4
(
6
), pp.
711
718
.
18.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
Cambridge, MA
.
19.
Chabane
,
F.
,
Noureddine
,
M.
, and
Brima
,
A.
,
2018
, “
Experimental Study of Thermal Efficiency of a Solar Air Heater With an Irregularity Element on Absorber Plate
,”
Int. J. Heat Tech.
,
36
(
3
), pp.
855
860
. 10.18280/ijht.360311
You do not currently have access to this content.