Cooling performance enhancement of computer liquid cooling (LC) systems using hexagonal boron nitride (hBN)–water nanofluids is investigated experimentally. Particle volume fractions of 0.1–2% are considered at constant flow rates varying from 0.3 to 2 L/min for two different cold plates (CPs), with and without fins. A commercial closed-loop LC system is also tested to examine performance of hBN–water nanofluids at constant pumping power. It was observed that the thermal performance can be improved by using hBN nanofluids, and higher improvements are achieved for systems with limited convection rates.

References

1.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
2.
Choi
,
U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, D. A. Siginer and H. P. Wang, eds., FED-Vol. 231/MD-Vol. 66, American Society of Mechanical Engineers, New York, pp. 99–105.
3.
Buongiomo
,
J.
,
Venerus
,
D. C.
,
Mckrell
,
T.
,
Buongiorno
,
J. D.
,
Venerus
,
C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
, and
Christianson
,
R.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
, p.
094312
.
4.
Wang
,
J. J.
,
Zheng
,
R. T.
,
Gao
,
J. W.
, and
Chen
,
G.
,
2012
, “
Heat Conduction Mechanisms in Nanofluids and Suspensions
,”
Nano Today
,
7
(
2
), pp.
124
136
.
5.
Keblinski
,
P.
,
Phillpot
,
S.
,
Choi
,
S. U.
, and
Eastman
,
J.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
6.
Moffat, R. J., 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(1), pp. 3–17.
7.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1501
1506
.
8.
Townsend
,
J.
, and
Christianson
,
R. J.
,
2009
, “
Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031006
.
9.
Roberts
,
N. A.
, and
Walker
,
D. G.
,
2010
, “
Convective Performance of Nanofluids in Commercial Electronics Cooling Systems
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2499
2504
.
10.
Putra
,
N.
,
Yanuar
, and
Iskandar
,
F. N.
,
2011
, “
Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1274
1281
.
11.
Rafati
,
M.
,
Hamidi
,
A. A.
, and
Shariati Niaser
,
M.
,
2012
, “
Application of Nanofluids in Computer Cooling Systems (Heat Transfer Performance of Nanofluids)
,”
Appl. Therm. Eng.
,
45–46
, pp.
9
14
.
12.
Selvakumar
,
P.
, and
Suresh
,
S.
,
2012
, “
Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
57
63
.
13.
Nazari
,
M.
,
Karami
,
M.
, and
Ashouri
,
M.
,
2014
, “
Comparing the Thermal Performance of Water, Ethylene Glycol, Alumina and CNT Nanofluids in CPU Cooling: Experimental Study
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
371
377
.
14.
Li
,
Y.
,
Zhou
,
J.
,
Luo
,
Z.
,
Tung
,
S.
,
Schneider
,
E.
,
Wu
,
J.
, and
Li
,
X.
,
2011
, “
Investigation on Two Abnormal Phenomena About Thermal Conductivity Enhancement of BN/EG Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
443
.
15.
Guo
,
J. F.
,
Guo
,
Z. Q.
,
Wang
,
X. F.
,
Li
,
Y. J.
, and
Lv
,
Q. J.
,
2015
, “
Experimental Investigation on Thermophysical Performance of BN/EG Nanofluids Influenced by Dispersant
,”
Appl. Mech. Mater.
,
757
, pp.
7
12
.
16.
Ilhan
,
B.
,
Kurt
,
M.
, and
Ertürk
,
H.
,
2016
, “
Experimental Investigation of Heat Transfer Enhancement and Viscosity Change of HBN Nanofluids
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
272
283
.
17.
İlhan
,
B.
, and
Ertürk
,
H.
,
2017
, “
Experimental Characterization of Laminar Forced Convection of HBN-Water Nanofluid in Circular Pipe
,”
Int. J. Heat Mass Transfer
,
111
, pp.
500
507
.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
19.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
20.
Yoo
,
D.-H.
,
Hong
,
K. S.
, and
Yang
,
H.-S.
,
2007
, “
Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids
,”
Thermochim. Acta
,
455
(
1–2
), pp.
66
69
.
21.
Escher
,
W.
,
Brunschwiler
,
T.
,
Shalkevich
,
N.
,
Shalkevich
,
A.
,
Burgi
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
On the Cooling of Electronics With Nanofluids
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051401
.
You do not currently have access to this content.