Cooling performance enhancement of computer liquid cooling (LC) systems using hexagonal boron nitride (hBN)–water nanofluids is investigated experimentally. Particle volume fractions of 0.1–2% are considered at constant flow rates varying from 0.3 to 2 L/min for two different cold plates (CPs), with and without fins. A commercial closed-loop LC system is also tested to examine performance of hBN–water nanofluids at constant pumping power. It was observed that the thermal performance can be improved by using hBN nanofluids, and higher improvements are achieved for systems with limited convection rates.
Issue Section:
Technical Brief
References
1.
Sobhan
, C. B.
, and Garimella
, S. V.
, 2001
, “A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,” Microscale Thermophys. Eng.
, 5
(4
), pp. 293
–311
.2.
Choi
, U. S.
, 1995
, “Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows
, D. A. Siginer and H. P. Wang, eds., FED-Vol. 231/MD-Vol. 66, American Society of Mechanical Engineers, New York, pp. 99–105.3.
Buongiomo
, J.
, Venerus
, D. C.
, Mckrell
, T.
, Buongiorno
, J. D.
, Venerus
, C.
, Prabhat
, N.
, McKrell
, T.
, Townsend
, J.
, and Christianson
, R.
, 2009
, “A Benchmark Study on the Thermal Conductivity of Nanofluids
,” J. Appl. Phys.
, 106
, p. 094312
.4.
Wang
, J. J.
, Zheng
, R. T.
, Gao
, J. W.
, and Chen
, G.
, 2012
, “Heat Conduction Mechanisms in Nanofluids and Suspensions
,” Nano Today
, 7
(2
), pp. 124
–136
.5.
Keblinski
, P.
, Phillpot
, S.
, Choi
, S. U.
, and Eastman
, J.
, 2002
, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,” Int. J. Heat Mass Transfer
, 45
(4
), pp. 855
–863
.6.
Moffat, R. J., 1988, “
Describing the Uncertainties in Experimental Results
,” Exp. Therm. Fluid Sci.
, 1
(1), pp. 3–17.7.
Nguyen
, C. T.
, Roy
, G.
, Gauthier
, C.
, and Galanis
, N.
, 2007
, “Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System
,” Appl. Therm. Eng.
, 27
(8–9
), pp. 1501
–1506
.8.
Townsend
, J.
, and Christianson
, R. J.
, 2009
, “Nanofluid Properties and Their Effects on Convective Heat Transfer in an Electronics Cooling Application
,” ASME J. Therm. Sci. Eng. Appl.
, 1
(3
), p. 031006
.9.
Roberts
, N. A.
, and Walker
, D. G.
, 2010
, “Convective Performance of Nanofluids in Commercial Electronics Cooling Systems
,” Appl. Therm. Eng.
, 30
(16
), pp. 2499
–2504
.10.
Putra
, N.
, Yanuar
, and Iskandar
, F. N.
, 2011
, “Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,” Exp. Therm. Fluid Sci.
, 35
(7
), pp. 1274
–1281
.11.
Rafati
, M.
, Hamidi
, A. A.
, and Shariati Niaser
, M.
, 2012
, “Application of Nanofluids in Computer Cooling Systems (Heat Transfer Performance of Nanofluids)
,” Appl. Therm. Eng.
, 45–46
, pp. 9
–14
.12.
Selvakumar
, P.
, and Suresh
, S.
, 2012
, “Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink
,” Exp. Therm. Fluid Sci.
, 40
, pp. 57
–63
.13.
Nazari
, M.
, Karami
, M.
, and Ashouri
, M.
, 2014
, “Comparing the Thermal Performance of Water, Ethylene Glycol, Alumina and CNT Nanofluids in CPU Cooling: Experimental Study
,” Exp. Therm. Fluid Sci.
, 57
, pp. 371
–377
.14.
Li
, Y.
, Zhou
, J.
, Luo
, Z.
, Tung
, S.
, Schneider
, E.
, Wu
, J.
, and Li
, X.
, 2011
, “Investigation on Two Abnormal Phenomena About Thermal Conductivity Enhancement of BN/EG Nanofluids
,” Nanoscale Res. Lett.
, 6
(1
), p. 443
.15.
Guo
, J. F.
, Guo
, Z. Q.
, Wang
, X. F.
, Li
, Y. J.
, and Lv
, Q. J.
, 2015
, “Experimental Investigation on Thermophysical Performance of BN/EG Nanofluids Influenced by Dispersant
,” Appl. Mech. Mater.
, 757
, pp. 7
–12
.16.
Ilhan
, B.
, Kurt
, M.
, and Ertürk
, H.
, 2016
, “Experimental Investigation of Heat Transfer Enhancement and Viscosity Change of HBN Nanofluids
,” Exp. Therm. Fluid Sci.
, 77
, pp. 272
–283
.17.
İlhan
, B.
, and Ertürk
, H.
, 2017
, “Experimental Characterization of Laminar Forced Convection of HBN-Water Nanofluid in Circular Pipe
,” Int. J. Heat Mass Transfer
, 111
, pp. 500
–507
.18.
Kline
, S. J.
, and McClintock
, F. A.
, 1953
, “Describing Uncertainties in Single Sample Experiments
,” Mech. Eng.
, 75
, pp. 3
–8
.19.
Pak
, B. C.
, and Cho
, Y. I.
, 1998
, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,” Exp. Heat Transfer
, 11
(2
), pp. 151
–170
.20.
Yoo
, D.-H.
, Hong
, K. S.
, and Yang
, H.-S.
, 2007
, “Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids
,” Thermochim. Acta
, 455
(1–2
), pp. 66
–69
.21.
Escher
, W.
, Brunschwiler
, T.
, Shalkevich
, N.
, Shalkevich
, A.
, Burgi
, T.
, Michel
, B.
, and Poulikakos
, D.
, 2011
, “On the Cooling of Electronics With Nanofluids
,” ASME J. Heat Transfer
, 133
(5
), p. 051401
.Copyright © 2019 by ASME
You do not currently have access to this content.