Abstract

The strength distribution of reaction-bonded silicon carbide tubes that failed by internal pressurization was predicted from strength distributions obtained from simple laboratory test specimens at room temperature. The strength distributions of flexure bars, C-rings tested in tension, C-rings tested in compression, diametrally compressed O-rings, and internally pressurized short tubes were compared with the strength distribution of internally pressurized long tubes. The methodology involved application of Weibull statistics using elasticity theory to define the stress distributions in the simple specimens. The flexural specimens did not yield acceptable results, since they were ground before testing, thereby altering their flaw population in comparison with the processing-induced flaw populations of the tubular specimens. However, the short tube internal pressure test, the C-ring tested in tension, and the diametrally compressed O-ring test configurations yielded accurate strength predictions of full-scale tubular components, since these specimens more accurately represent the strength-limiting flaw population in the long tubes.

References

1.
Gyekenyesi
,
J. P.
, “
SCARE: A Postprocessor Program to MSC/NASTRAN for Reliability Analysis of Structural Ceramic Components
,”
Journal of Engineering for Gas Turbines and Power, Transactions of ASME
, Vol.
108
,
1986
, pp.
540
546
.
2.
Batdorf
,
S. B.
, “
Fundamentals of the Statistical Theory of Failure
,” in
Fracture Mechanics of Ceramics
, Vol.
3
,
Bradt
R. C.
,
Hasselman
D. P. H.
,
Evans
A. G.
, and
Lange
F. F.
, Eds.,
Plenum Press
,
New York
,
1978
, pp.
1
29
.
3.
Deslavo
,
G. J.
, “
Theory and Structural Design Applications of Weibull Statistics
,” WANL-TME-2688,
Westinghouse Electric Corp.
,
1970
.
4.
Shih
,
T.
, “
An Evaluation of the Probabilistic Approach to Brittle Design
,”
Engineering Fracture Mechanics
 0013-7944 https://doi.org/10.1016/0013-7944(80)90058-2, Vol.
13
,
1980
, pp.
257
271
.
5.
Johnson
,
C. A.
, “
Fracture Statistics in Design and Applications
,” General Electric Report No. 79CRD212,
1979
.
6.
Ferber
,
M. K.
,
Tennery
,
V.
,
Waters
,
S.
, and
Ogle
,
J.
, “
Fracture Strength Characterization of Tubular Ceramic Materials Using a Simple C-ring Geometry
,”
Journal of Materials Science
 0022-2461, Vol.
8
,
1986
, pp.
2628
2632
.
7.
Jadaan
,
O. M.
,
Shelleman
,
D. L.
,
Conway
,
J. C.
, Jr.
,
Mecholsky
,
J. J.
, Jr.
, and
Tressler
,
R. E.
, “
Prediction of the Strength of Ceramic Tubular Components: Part I—Analysis
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
19
, No.
3
,
05
1991
, pp.
181
191
.
8.
Weibull
,
W.
, “
A Statistical Distribution Function of Wide Applicability
,”
Journal of Applied Mechanics
 0021-8936, Vol.
18
,
1951
, pp.
293
297
.
9.
Shetty
,
D. K.
,
Rosenfield
,
A. R.
, and
Duckworth
,
W. H.
, “
Statistical Analysis of Size and Stress State Effects on the Strength of an Alumina Disk
,” in
Methods for Assessing the Structural Reliability of Brittle Materials
, ASTM STP 844,
American Society for Testing and Materials
,
Philadelphia
,
1984
, pp.
57
80
.
10.
Bansal
,
G. K.
and
Duckworth
W. H.
, “
Effect of Specimen Size on Ceramic Strength
,” in
Fracture Mechanics of Ceramics
, Vol.
3
,
Plenum Press
,
New York
,
1978
, pp.
189
204
.
11.
Weaver
,
G.
, “
Engineering with Ceramics: Part I—The Weibull Model
,”
Journal of Materials Education
, Vol.
5
, No.
5
,
1983
.
12.
Evans
,
A. G.
, “
A General Approach for the Statistical Analysis of Multiaxial Fracture
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
61
, No.
7–8
,
1978
, pp.
302
308
.
13.
Giovan
,
M. N.
and
Sines
,
G.
, “
Biaxial and Uniaxial Data for Statistical Comparisons of a Ceramic's Strength
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
62
, No.
9–10
,
1979
, pp.
510
515
.
14.
Giovan
,
M. N.
and
Sines
,
G.
, “
Strength of a Ceramic at High Temperatures under Biaxial and Uniaxial Tension
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
64
, No.
2
,
1981
, pp.
68
73
.
15.
Petrovic
,
J. J.
and
Stout
,
M. G.
, “
Fracture of A1203 in Combined Tension/Torsion: II, Weibull Theory
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
64
, No.
11
,
1981
, pp.
661
666
.
16.
Stout
,
M. G.
and
Petrovic
,
J. J.
, “
Multiaxial Loading Fracture of A1203 Tubes: I, Experiments
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
67
, No.
1
,
1984
, pp.
14
23
.
17.
Lamon
,
J.
and
Evans
,
A. G.
, “
Statistical Analysis of Bending Strengths for Brittle Solids: A Multiaxial Fracture Problem
,”
Journal of the American Ceramic Society
 0002-7820 https://doi.org/10.1111/j.1151-2916.1983.tb10012.x, Vol.
66
, No.
3
,
1983
, pp.
177
182
.
18.
Lamon
,
J.
, “
Statistical Approaches to Failure for Ceramic Reliability Assessment
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
71
, No.
2
,
1988
, pp.
106
112
.
19.
Shelleman
,
D. L.
,
Jadaan
,
O. M.
,
Mecholsky
,
J. J.
, Jr.
, and
Conway
,
J. C.
, Jr.
, “
Tube Burst Test Apparatus for High Temperature Strength Evaluation of Ceramics
,” to be submitted to
Journal of Testing and Evaluation
 0090-3973.
20.
Abernethy
,
R. B.
,
Breneman
,
J. E.
,
Hedlin
,
C. H.
, and
Reinman
,
G. L.
,
Weibull Analysis Handbook
, Final Report, AFWAL-TR-2079,
Pratt and Whitney Aircraft
, West Palm Beach, Fla.,
1983
.
21.
Srinivisan
,
R.
and
Wharton
,
R. M.
, “
Confidence Bands for the Weibull Distribution
,”
Technometrics
 0040-1706, Vol.
17
, No.
3
,
1975
.
22.
Johnson
,
C. A.
and
Tucker
,
W. T.
, “
Advanced Statistical Concepts of Fracture in Brittle Materials
,”
Ceram. Tech. Newsletter
, No.
21
,
1989
.
23.
Batdorf
,
S. B.
and
Sines
,
G.
, “
Combining Data for Improved Weibull Parameter Estimation
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
63
, No.
1–2
,
1980
, pp.
214
218
.
24.
Roy
,
D. W.
,
Green
,
K. E.
, and
Dobos
,
G. J.
,
Ceramic Tube Materials and Processing Development, Development of Large Reaction Bonded Silicon Carbide Components for Gas-Fired Furnances
, Topical Report,
Gas Research Institute
, GRI-88/0139, 1985–87.
25.
Johnson
,
L. G.
,
The Statistical Treatment of Fatigue Experiments
,
Research Laboratories, General Motors Corp.
,
1959
, pp.
44
50
.
26.
De With
,
G.
, “
Note on the Use of the Diametral Compression Test for the Strength Measurement of Ceramics
,”
Journal of Materials Science Letters
 0261-8028, Vol.
3
, No.
11
,
1984
, pp.
1000
1002
.
This content is only available via PDF.
You do not currently have access to this content.