Abstract

Near-road air pollution is a worldwide public health concern, especially in urban areas. Vehicle-induced turbulence (VIT) has a major impact on the initial dispersion of traffic-related pollutants on the roadways, affecting their subsequent near-road impact. The current methods for high-fidelity VIT simulations using computational fluid dynamics (CFD) are often computationally expensive or prohibitive. Earlier studies adopted the turbulent kinetic energy (TKE) method, which models VIT as a fixed TKE volume source and produces turbulence uniformly in the computational traffic zones. This paper presents two novel methods, namely the force method and the moving force method, to generate VIT implicitly by injecting a force source into the computational domain instead of physical vehicles in the domain explicitly, thus greatly reducing the computational burden. The simulation results were evaluated against experimental data collected in a field study near a major highway in Las Vegas, NV, which included collocated measurements of traffic and wind speed. The TKE method systematically overestimated the turbulence produced on the highway by converting the drag force completely into turbulence. This indicates that the TKE method, currently being used to implicitly model VIT in CFD simulations, requires major improvements. In comparison, the proposed force and moving force methods performed favorably and were able to capture turbulence anisotropicity and fluid convection. The force method was shown to be a computationally efficient way to simulate VIT with adequate accuracy, while the moving force method has the potential to emulate vehicle motion and its impact on fluid flow.

References

1.
HEI
,
2010
,
Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects
,
Health Effects Institute
, pp.
1
386
.
2.
Nieuwenhuijsen
,
M. J.
,
2021
, “
New Urban Models for More Sustainable, Liveable and Healthier Cities Post Covid19; Reducing Air Pollution, Noise and Heat Island Effects and Increasing Green Space and Physical Activity
,”
Environ. Int.
,
157
, p.
106850
.
3.
Wang
,
Y.
,
Wen
,
Y.
,
Wang
,
Y.
,
Zhang
,
S.
,
Zhang
,
K. M.
,
Zhang
,
H.
,
Xing
,
J.
,
Wu
,
Y.
, and
Hao
,
J.
,
2020
, “
Four-Month Changes in Air Quality During and After the COVID-19 Lockdown in Six Megacities in China
,”
Environ. Sci. Technol. Lett.
,
7
(
11
), pp.
802
808
.
4.
Zheng
,
X.
,
Zhang
,
S.
,
Wu
,
Y.
,
Zhang
,
K. M.
,
Li
,
Z.
, and
Hao
,
J.
,
2017
, “
Characteristics of Black Carbon Emissions From in-use Light-Duty Passenger vehicles.
Environ. Poll.
,
231
(
1
), pp.
348
356
.
5.
Wang
,
Y. J.
,
DenBleyker
,
A.
,
McDonald-Buller
,
E.
,
Allen
,
D.
, and
Zhang
,
K. M.
,
2011
, “
Modeling the Chemical Evolution of Nitrogen Oxides Near Roadways
,”
Atmos. Environ.
,
45
(
1
), pp.
43
52
.
6.
Deshmukh
,
P.
,
Isakov
,
V.
,
Venkatram
,
A.
,
Yang
,
B.
,
Zhang
,
K. M.
,
Logan
,
R.
, and
Baldauf
,
R.
,
2019
, “
The Effects of Roadside Vegetation Characteristics on Local, Near-Road Air Quality
,”
Air Qual. Atmos. Health
,
12
(
3
), pp.
259
270
.
7.
Solazzo
,
E.
,
Vardoulakis
,
S.
, and
Cai
,
X.
,
2011
, “
A Novel Methodology for Interpreting Air Quality Measurements From Urban Streets Using CFD Modelling
,”
Atmos. Environ.
,
45
(
29
), pp.
5230
5239
.
8.
Gallagher
,
J.
,
Gill
,
L. W.
, and
Mcnabola
,
A.
,
2013
, “T
he Passive Control of Air Pollution Exposure in Dublin, Ireland: A Combined Measurement and Modelling Case Study
,”
Sci. Total Environ.
,
458–460
, pp.
331
343
.
9.
Steffens
,
J. T.
,
Heist
,
D. K.
,
Perry
,
S. G.
,
Isakov
,
V.
,
Baldauf
,
R. W.
, and
Zhang
,
K. M.
,
2014
, “
Effects of Roadway Configurations on Near-Road Air Quality and the Implications on Roadway Designs
,”
Atmos. Environ.
,
94
, pp.
74
85
.
10.
Hashad
,
K.
,
Yang
,
B.
,
Baldauf
,
R. W.
,
Deshmukh
,
P.
,
Isakov
,
V.
, and
Zhang
,
K. M.
,
2020
, “
Enhancing the Local Air Quality Benefits of Roadside Green Infrastructure Using Low-Cost, Impermeable, Solid Structures (LISS)
,”
Sci. Total Environ.
,
717
, p.
137136
. URL
11.
Eskridge
,
R. E.
, and
Rao
,
T. S.
,
1986
, “
Turbulent Diffusion Behind Vehicles: Experimentally Determined Turbulence Mixing Parameters
,”
Atmos. Environ.
,
20
(
5
), pp.
851
860
.
12.
Baker
,
C. J.
,
2001
, “
Flow and Dispersion in Ground Vehicle
,”
J. Fluids Struct.
,
15
, pp.
1031
1060
.
13.
Wang
,
Y. J.
, and
Zhang
,
K. M.
,
2009
, “
Modeling Near-Road Air Quality Using a Computational Fluid Dynamics Model, CFD-VIT-RIT.
,”
Environ. Sci. Technol.
,
43
(
20
), pp.
7778
7783
.
14.
Bäumer
,
D.
,
Vogel
,
B.
, and
Fiedler
,
F.
,
2005
, “
A New Parameterisation of Motorway-Induced Turbulence and Its Application in a Numerical Model
,”
Atmos. Environ.
,
39
(
31 SPEC. ISS.
), pp.
5750
5759
.
15.
Makar
,
P. A.
,
Zhang
,
J.
,
Gong
,
W.
,
Stroud
,
C.
,
Sills
,
D.
,
Hayden
,
K. L.
,
Brook
,
J.
, et al
,
2010
, “
Mass Tracking for Chemical Analysis: The Causes of Ozone Formation in Southern Ontario During BAQS-Met 2007
,”
Atmos. Chem. Phys.
,
10
(
22
), pp.
11151
11173
.
16.
Kalthoff
,
N.
,
Bäumer
,
D.
,
Corsmeier
,
U.
,
Kohler
,
M.
, and
Vogel
,
B.
,
2005
, “
Vehicle-Induced Turbulence Near a Motorway
,”
Atmos. Environ.
,
39
(
31 SPEC. ISS.
), pp.
5737
5749
.
17.
Gordon
,
M.
,
Staebler
,
R. M.
,
Liggio
,
J.
,
Makar
,
P.
,
Li
,
S. M.
,
Wentzell
,
J.
,
Lu
,
G.
,
Lee
,
P.
, and
Brook
,
J. R.
,
2012
, “
Measurements of Enhanced Turbulent Mixing Near Highways
,”
J. Appl. Meteorol. Climatol.
,
51
(
9
), pp.
1618
1632
.
18.
Yu
,
Y. T.
,
Xiang
,
S.
, and
Noll
,
K. E.
,
2020
, “
Evaluation of the Relationship Between Momentum Wakes Behind Moving Vehicles and Dispersion of Vehicle Emissions Using Near-Roadway Measurements
,”
Environ. Sci. Technol.
,
54
(
17
), pp.
10483
10492
.
19.
Wang
,
Y. J.
,
Nguyen
,
M. T.
,
Steffens
,
J. T.
,
Tong
,
Z.
,
Wang
,
Y.
,
Hopke
,
P. K.
, and
Zhang
,
K. M.
,
2013
, “
Modeling Multi-Scale Aerosol Dynamics and Micro-Environmental Air Quality Near a Large Highway Intersection Using the CTAG Model
,”
Sci. Total Environ.
,
443
, pp.
375
386
.
20.
Bhautmage
,
U.
, and
Gokhale
,
S.
,
2016
, “
Effects of Moving-Vehicle Wakes on Pollutant Dispersion Inside a Highway Road Tunnel
,”
Environ. Pollut.
,
218
, pp.
783
793
.
21.
Wang
,
T.
,
Yang
,
B.
,
Carrion-Matta
,
A.
, and
Zhang
,
K. M.
,
2016
, “
The Effects of Micrometeorology and Vehicle-Induced Turbulence on On-Road Air Quality With Presence of Roadside Barriers
,”
Transportation Research Board 95th Annual Meeting
,
Washington, DC
,
Jan. 10–14
, pp.
1
12
.
22.
Jha
,
P. K.
,
Duque
,
E. P. N.
,
Bashioum
,
J. L.
, and
Schmitz
,
S.
,
2015
, “
Unraveling the Mysteries of Turbulence Transport in a Wind Farm
,”
Energies
,
8
(
7
), pp.
6468
6496
.
23.
Sørensen
,
J. N.
,
Mikkelsen
,
R. F.
,
Dan
,
S.
,
Ivanell
,
S.
,
Sarmast
,
S.
, and
Andersen
,
S. J.
, “
Simulation of Wind Turbine Wakes Using the Actuator Line Technique Subject Areas
,”
Philos. Trans. R. Soc., A
,
373
(
2035
), p.
20140071
.
24.
Tong
,
Z.
,
Baldauf
,
R. W.
,
Isakov
,
V.
,
Deshmukh
,
P.
, and
Max Zhang
,
K.
,
2016
, “
Roadside Vegetation Barrier Designs to Mitigate Near-Road Air Pollution Impacts
,”
Sci. Total Environ.
,
541
, pp.
920
927
.
25.
Steffens
,
J. T.
,
Wang
,
Y. J.
, and
Zhang
,
K. M.
,
2012
, “
Exploration of Effects of a Vegetation Barrier on Particle Size Distributions in a Near-Road Environment
,”
Atmos. Environ.
,
50
, pp.
120
128
.
26.
Thaker
,
P.
, and
Gokhale
,
S.
, “
The Impact of Traffic-Flow Patterns on Air Quality in Urban Street Canyons
,”
Environ. Pollut.
,
208
, pp.
161
169
.
27.
Liu
,
Y.
,
Luo
,
Y.
,
Li
,
L.
,
Ding
,
H.
,
Huang
,
Y.
, and
Chen
,
J.
,
2019
, “
The Impact of Viaduct on Traffic-Related Particle Pollution in the Street Canyon
,”
Int. J. Emerg. Eng. Res. Technol.
,
7
(
2
), pp.
7
16
.
28.
Baldauf
,
R. W.
,
Heist
,
D.
,
Isakov
,
V.
,
Perry
,
S.
,
Hagler
,
G. S. W.
,
Kimbrough
,
S.
,
Shores
,
R.
,
Black
,
K.
, and
Brixey
,
L.
,
2013
, “
Air Quality Variability Near a Highway in a Complex Urban Environment
,”
Atmos. Environ.
,
64
, pp.
169
178
.
29.
Kimbrough
,
S.
,
Baldauf
,
R. W.
,
Hagler
,
G. S. W.
,
Shores
,
R. C.
,
Mitchell
,
W.
,
Whitaker
,
D. A.
,
Croghan
,
C. W.
, and
Vallero
,
D. A.
,
2013
, “
Long-Term Continuous Measurement of Nearroad Air Pollution in Las Vegas: Seasonal Variability in Traffic Emissions Impact on Local Air Quality
,”
Air Qual. Atmos. Health
,
6
(
1
), pp.
295
305
.
30.
Tominaga
,
Y.
,
Mochida
,
A.
,
Yoshie
,
R.
,
Kataoka
,
H.
,
Nozu
,
T.
,
Yoshikawa
,
M.
, and
Shirasawa
,
T.
,
2008
, “
AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment Around Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1749
1761
.
31.
Richards
,
P.
,
1993
, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-ɛ Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
145
153
.
32.
Pope
,
S. B.
,
2001
,
Turbulent Flows
,
Cambridge University Press
.
33.
Kastner-Klein
,
P.
,
Fedorovich
,
E.
,
Ketzel
,
M.
,
Berkowicz
,
R.
, and
Britter
,
R.
,
2003
, “
The Modelling of Turbulence From Traffic in Urban Dispersion Models—Part II: Evaluation Against Laboratory and Full-Scale Concentration Measurements in Street Canyons
,”
Environ. Fluid Mech.
,
3
(
2
), pp.
145
172
.
34.
Hataya
,
N.
,
Mochida
,
A.
,
Iwata
,
T.
,
Tabata
,
Y.
,
Yoshino
,
H.
, and
Tominaga
,
Y.
,
2006
, “
Development of the Simulation Method for Thermal Environment and Pollutant Diffusion in Street Canyons With Subgrid Scale Obstacles
,”
Proceedings of the Fourth International Symposium on Computational Wind Engineering (CWE2006)
,
Yokohama, Japan
, pp.
553
556
.
35.
Hucho
,
W.-H.
,
2013
,
Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering
,
Elsevier
,
New York
.
You do not currently have access to this content.