Abstract

Radiative surface properties play a critical role in the design, analysis and optimization of solar–thermal systems. Cavity receivers increase the efficiency of solar–thermal energy systems through the cavity effect. The cavity effect refers to increased absorption of radiation due to multiple reflections within a cavity. Apparent radiative surface properties of a cavity characterize the effective interactions of radiation passing through an imaginary surface covering the cavity aperture. In this study, we investigate the extent to which the apparent emissivity of a cavity with a non-uniform surface temperature profile may be estimated using an isothermal enclosure model. A cylindrical cavity was assumed to have a linearly increasing, linearly decreasing or parabolic temperature profile. The cavity's apparent emissivity and absorptivity were calculated for various length-to-diameter ratios (L/D) and intrinsic emissivity (ε). This work shows that a spatially varying surface temperature can significantly affect the apparent emissivity and absorptivity, especially for shallow cavities with low intrinsic emissivity. Moreover, under non-isothermal conditions, changes in the cavity's geometry result in larger changes in the apparent radiative properties than observed for isothermal cases. For a cavity with an intrinsic emissivity of 0.3, the percent difference between non-isothermal and isothermal conditions reaches ∼25% for L/D ratios of 4 and 8 for cavities with linearly increasing or parabolic temperature profiles. Similarly, for ε=0.9 and ΔTw/T0=0.1, this difference is <1% across all three wall temperature cases when L/D=4.

References

1.
Wang
,
D.
,
Chen
,
Y.
,
Xiao
,
H.
, and
Zhang
,
Y.
,
2022
, “
Effects of Geometric and Operating Parameters on Thermal Performance of Conical Cavity Receivers Using Supercritical CO2 as Heat Transfer Fluid
,”
Renew. Energy
,
185
, pp.
804
819
.
2.
Hassan
,
A.
,
Quanfang
,
C.
,
Abbas
,
S.
,
Lu
,
W.
, and
Youming
,
L.
,
2021
, “
An Experimental Investigation on Thermal and Optical Analysis of Cylindrical and Conical Cavity Copper Tube Receivers Design for Solar Dish Concentrator
,”
Renew. Energy
,
179
, pp.
1849
1864
.
3.
Essa
,
M. A.
, and
Mostafa
,
N. H.
,
2017
, “
Theoretical and Experimental Study for Temperature Distribution and Flow Profile in All Water Evacuated Tube Solar Collector Considering Solar Radiation Boundary Condition
,”
Sol. Energy
,
142
, pp.
267
277
.
4.
Issa
,
O. O.
,
Thirunavukkarasu
,
V.
, and
Sudhakar
,
P.
,
2021
, “
Novel Designs of Cavity Receiver for a Solar Parabolic Dish Concentrator
,”
J. Phys.: Conf. Ser.
,
2054
(
1
), p.
012036
.
5.
Rafiei
,
A.
,
Alsagri
,
A. S.
,
Mahadzir
,
S.
,
Loni
,
R.
,
Najafi
,
G.
, and
Kasaeian
,
A.
,
2019
, “
Thermal Analysis of a Hybrid Solar Desalination System Using Various Shapes of Cavity Receiver: Cubical, Cylindrical, and Hemispherical
,”
Energy Convers. Manage.
,
198
, p.
111861
.
6.
Teichel
,
S. H.
,
Feierabend
,
L.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2012
, “
An Alternative Method for Calculation of Semi-Gray Radiation Heat Transfer in Solar Central Cavity Receivers
,”
Sol. Energy
,
86
(
6
), pp.
1899
1909
.
7.
Ebert
,
M.
,
Benitez
,
D.
,
Röger
,
M.
,
Korzynietz
,
R.
, and
Brioso
,
J. A.
,
2016
, “
Efficiency Determination of Tubular Solar Receivers in Central Receiver Systems
,”
Sol. Energy
,
139
, pp.
179
189
.
8.
Fu
,
C. J.
, and
Tan
,
W. C.
,
2009
, “
Semiconductor Thin Films Combined With Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission
,”
ASME J. Heat Transfer
,
131
(
3
), p.
033105
.
9.
Wijewardane
,
S.
, and
Goswami
,
D. Y.
,
2012
, “
A Review on Surface Control of Thermal Radiation by Paints and Coatings for New Energy Applications
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
1863
1873
.
10.
Wijesuriya
,
S.
,
Kishore
,
R. A.
,
Bianchi
,
M. V. A.
, and
Booten
,
C.
,
2022
, “
Potential Energy Savings Benefits and Limitations of Radiative Cooling Coatings for U.S. Residential Buildings
,”
J. Clean. Prod.
,
379
(
Part 2
), p.
134763
.
11.
Grinham
,
J.
,
Craig
,
S.
,
Ingber
,
D. E.
, and
Bechthold
,
M.
,
2020
, “
Origami Microfluidics for Radiant Cooling With Small Temperature Differences in Buildings
,”
Appl. Energy
,
277
, p.
115610
.
12.
Hong
,
S.
,
Shi
,
Y.
,
Li
,
R.
,
Zhang
,
C.
,
Jin
,
Y.
, and
Wang
,
P.
,
2018
, “
Nature-Inspired, 3D Origami Solar Steam Generator Toward Near Full Utilization of Solar Energy
,”
ACS Appl. Mater. Interfaces
,
10
(
34
), pp.
28517
28524
.
13.
Meaker
,
K. S.
,
Mofidipour
,
E.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2023
, “
Measured Spectral, Directional Radiative Behavior of Corrugated Surfaces
,”
Int. J. Heat Mass Transf.
,
202
, p.
123745
.
14.
Mulford
,
R. B.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2016
, “
Dynamic Control of Radiative Surface Properties With Origami-Inspired Design
,”
ASME J. Heat Transfer
,
138
(
3
), p.
032701
.
15.
Mulford
,
R. B.
,
Dwivedi
,
V. H.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2019
, “
Control of Net Radiative Heat Transfer With a Variable-Emissivity Accordion Tessellation
,”
ASME J. Heat Transfer
,
141
(
3
), p.
032702
.
16.
Campanaro
,
P.
, and
Ricolfi
,
T.
,
1966
, “
Effective Emissivity of a Spherical Cavity
,”
Appl. Opt.
,
5
(
6
), pp.
929
932
.
17.
Mei
,
G.
,
Zhang
,
J.
,
Zhao
,
S.
, and
Xie
,
Z.
,
2014
, “
Effective Emissivity of a Blackbody Cavity Formed by Two Coaxial Tubes
,”
Appl. Opt.
,
53
(
11
), pp.
2507
2514
.
18.
Lin
,
S. H.
, and
Sparrow
,
E. M.
,
1965
, “
Absorption Characteristics of a Specularly Reflecting Cylindrical Cavity Irradiated by an Obliquely Inclined Ray Bundle
,”
Appl. Opt.
,
4
(
3
), pp.
277
285
.
19.
Berry
,
K. H.
,
1981
, “
Emissivity of a Cylindrical Black-Body Cavity With a Re-Entrant Cone and Face
,”
J. Phys. E: Sci. Instrum.
,
14
(
5
), pp.
629
632
.
20.
Fussell
,
W. B.
,
1972
, “
Normal Emissivity of an Isothermal Diffusely Reflecting Cylindrical Cavity (With Top) as a Function of Inside Radius
,”
J. Res. Natl. Bur. Stand. Sect. A: Phys. Chem.
,
76
(
4
), pp.
347
349
.
21.
Redgrove
,
J. S.
, and
Berry
,
K. H.
,
1983
, “
Emissivity of a Cylindrical Blackbody Cavity Having Diffuse and Specular Components of Reflectivity With a Correction Term for Nonisothermal Conditions
,”
High Temp. High Press.
,
15
(
1
), pp.
1
11
.
22.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
23.
Mofidipour
,
E.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2024
, “
Chapter One—Review of the Cavity Effect: Modeling and Impact of Cavity Shape on Apparent Radiative Surface Properties
,”
Adv. Heat Transf.
,
57
, pp.
1
70
.
24.
Bergman
,
T. L.
,
Lavine
,
A.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
.
25.
Bedford
,
R. E.
, and
Ma
,
C. K.
,
1974
, “
Emissivities of Diffuse Cavities: Isothermal and Nonisothermal Cones and Cylinders
,”
J. Opt. Soc. Am.
,
64
(
3
), pp.
339
349
.
26.
He
,
S.
,
Dai
,
C.
,
Wang
,
Y.
,
Liu
,
J.
,
Xie
,
Y.
,
Feng
,
G.
, and
Wang
,
J.
,
2020
, “
A Method for Optimizing the Reference Temperature in the Effective Emissivity Calculation of Nonisothermal Blackbody Cavities
,”
Opt. Express
,
28
(
20
), pp.
29829
29842
.
27.
Bedford
,
R. E.
,
Ma
,
C. K.
,
Chu
,
Z.
,
Sun
,
Y.
, and
Chen
,
S.
,
1985
, “
Emissivities of Diffuse Cavities. 4: Isothermal and Nonisothermal Cylindro-Inner-Cones
,”
Appl. Opt.
,
24
(
18
), pp.
2971
2980
.
28.
Mei
,
G.
,
Zhang
,
J.
,
Wang
,
X.
,
Zhao
,
S.
, and
Xie
,
Z.
,
2015
, “
Spectral and Total Effective Emissivity of a Nonisothermal Blackbody Cavity Formed by Two Coaxial Tubes
,”
Appl. Opt.
,
54
(
13
), pp.
3948
3955
.
29.
He
,
S.
,
Dai
,
C.
,
Wang
,
Y.
,
Liu
,
J.
,
Feng
,
G.
, and
Wang
,
J.
,
2020
, “
Analysis and Improvements of Effective Emissivities of Nonisothermal Blackbody Cavities
,”
Appl. Opt.
,
59
(
23
), pp.
6977
6983
.
30.
Duraisamy Ramalingam
,
R.
,
Esakkimuthu
,
G. S.
,
Paulraj
,
J.
,
Abd Elnaby
,
K.
,
Athikesavan
,
M.
,
Sathyamurthy
,
R.
, and
Vaithilingam
,
S.
,
2020
, “
Inferences on the Effects of Geometries and Heat Transfer Fluids in Multi-Cavity Solar Receivers by Using CFD
,”
Environ. Sci. Pollut. Res.
,
27
(
26
), pp.
32205
32217
.
31.
Arrif
,
T.
,
Benchabane
,
A.
,
Guermoui
,
M.
,
Gama
,
A.
, and
Merarda
,
H.
,
2021
, “
Optical Performance Study of Different Shapes of Solar Cavity Receivers Used in Central Receiver System Plant
,”
Int. J. Ambient Energy
,
42
(
1
), pp.
81
95
.
32.
Azzouzi
,
D.
,
Boumeddane
,
B.
, and
Abene
,
A.
,
2017
, “
Experimental and Analytical Thermal Analysis of Cylindrical Cavity Receiver for Solar Dish
,”
Renew. Energy
,
106
, pp.
111
121
.
33.
Giovannelli
,
A.
, and
Bashir
,
M. A.
,
2017
, “
High-Temperature Cavity Receiver Integrated With a Short-Term Storage System for Solar MGTs: Heat Transfer Enhancement
,”
Energy Procedia
,
126
, pp.
557
564
.
34.
Huang
,
M. J.
,
Eames
,
P. C.
,
McCormack
,
S.
,
Griffiths
,
P.
, and
Hewitt
,
N. J.
,
2011
, “
Microencapsulated Phase Change Slurries for Thermal Energy Storage in a Residential Solar Energy System
,”
Renew. Energy
,
36
(
11
), pp.
2932
2939
.
35.
Aly
,
S. L.
, and
El-Sharkawy
,
A. I.
,
1990
, “
Effect of Storage Medium on Thermal Properties of Packed Beds
,”
Heat Recovery Syst. CHP
,
10
(
5–6
), pp.
509
517
.
36.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
A Review on Packed Bed Solar Energy Storage Systems
,”
Renew. Sustain. Energy Rev.
,
14
(
3
), pp.
1059
1069
.
37.
Bellos
,
E.
,
Bousi
,
E.
,
Tzivanidis
,
C.
, and
Pavlovic
,
S.
,
2019
, “
Optical and Thermal Analysis of Different Cavity Receiver Designs for Solar Dish Concentrators
,”
Energy Convers. Manage.
,
2
, p.
100013
.
38.
Kasaeian
,
A.
,
Kouravand
,
A.
,
Vaziri Rad
,
M. A.
,
Maniee
,
S.
, and
Pourfayaz
,
F.
,
2021
, “
Cavity Receivers in Solar Dish Collectors: A Geometric Overview
,”
Renew. Energy
,
169
, pp.
53
79
.
39.
Rodríguez-Sánchez
,
M. R.
,
Soria-Verdugo
,
A.
,
Almendros-Ibáñez
,
J. A.
,
Acosta-Iborra
,
A.
, and
Santana
,
D.
,
2014
, “
Thermal Design Guidelines of Solar Power Towers
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
428
438
.
40.
Wang
,
W.-Q.
,
Qiu
,
Y.
,
Li
,
M.-J.
,
He
,
Y.-L.
, and
Cheng
,
Z.-D.
,
2020
, “
Coupled Optical and Thermal Performance of a Fin-Like Molten Salt Receiver for the Next-Generation Solar Power Tower
,”
Appl. Energy
,
272
, p.
115079
.
41.
Wang
,
F.
,
Lin
,
R.
,
Liu
,
B.
,
Tan
,
H.
, and
Shuai
,
Y.
,
2013
, “
Optical Efficiency Analysis of Cylindrical Cavity Receiver With Bottom Surface Convex
,”
Sol. Energy
,
90
, pp.
195
204
.
42.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renew. Sustain. Energy Rev.
,
29
, pp.
835
846
.
43.
Ye
,
K.
,
Li
,
Q.
,
Zhang
,
Y.
,
Qiu
,
Y.
, and
Liu
,
B.
,
2022
, “
An Efficient Receiver Tube Enhanced by a Solar Transparent Aerogel for Solar Power Tower
,”
Energy
,
261
(
Part B
), p.
125313
.
44.
Soomro
,
M. I.
,
Mengal
,
A.
,
Memon
,
Y. A.
,
Khan
,
M. W. A.
,
Shafiq
,
Q. N.
, and
Mirjat
,
N. H.
,
2019
, “
Performance and Economic Analysis of Concentrated Solar Power Generation for Pakistan
,”
Processes
,
7
(
9
), p.
575
.
45.
Dunham
,
M. T.
, and
Iverson
,
B. D.
,
2014
, “
High-Efficiency Thermodynamic Power Cycles for Concentrated Solar Power Systems
,”
Renew. Sustain. Energy Rev.
,
30
, pp.
758
770
.
46.
Lee
,
E. T.
,
Mofidipour
,
E.
,
Jones
,
M. R.
, and
Iverson
,
B. D.
,
2023
, “
Efficient Monte Carlo Ray Tracing for Apparent Cavity Behavior
,”
Proceedings of the 17th International Heat Transfer Conference
,
Cape Town, South Africa
,
August 14–18
,
Begellhouse
.
47.
Chandos
,
R. J.
, and
Chandos
,
R. E.
,
1974
, “
Radiometric Properties of Isothermal, Diffuse Wall Cavity Sources
,”
Appl. Opt.
,
13
(
9
), pp.
2142
2152
.
You do not currently have access to this content.