Abstract

This study conducts an experimental assessment to investigate the influence of black gravel and cylindrical cement fins as thermal heat storage materials in a single-slope solar still. The trials are performed under the meteorological conditions of North-East, Silchar (24.76°N, 92.80°E), India. The performance of each modification is evaluated experimentally and compared to a conventional solar still (CSS) at three different water depths in the basin: 2 cm, 4 cm, and 6 cm. The study assessed the cumulative distillate output, along with a 4E analysis (energy, exergy, economic, and ecological analyses) of the solar stills. The outcomes show that at a 2 cm water depth, the daily yield and efficiency of the solar still with black gravel (SSBG) are 27% and 18% higher, respectively, when compared to the CSS. Additionally, the solar still with cylindrical cement fins (SSCCFs) achieved the highest daily production of 4462.4 mL/m2 with an efficiency of 41.5%. The cost assessment disclosed that the cost per liter of distillate water produced by SSBG and SSCCF is 18% and 23% lower, respectively, than the CSS at a water level of 2 cm. Moreover, the SSCCF improved carbon credits by 26% and enhanced carbon emission mitigation by 110.87% compared to the CSS at the same water depth. Solar stills equipped with energy storage provide a cost-effective solution for tackling water scarcity.

References

1.
Otero
,
C.
,
Urbina
,
A.
,
Rivero
,
E. P.
, and
Rodríguez
,
F. A.
,
2021
, “
Desalination of Brackish Water by Electrodeionization: Experimental Study and Mathematical Modeling
,”
Desalination
,
504
, p.
114803
.
2.
Modi
,
K. V.
, and
Modi
,
J. G.
,
2019
, “
Performance of Single-Slope Double-Basin Solar Stills With Small Pile of Wick Materials
,”
Appl. Therm. Eng.
,
149
, pp.
723
730
.
3.
Graf
,
J.
,
Togouet
,
S. Z.
,
Kemka
,
N.
,
Niyitegeka
,
D.
,
Meierhofer
,
R.
, and
Pieboji
,
J. G.
,
2010
, “
Health Gains From Solar Water Disinfection (SODIS): Evaluation of a Water Quality Intervention in Yaoundé, Cameroon
,”
J. Water Health
,
8
(
4
), pp.
779
796
.
4.
Tiwari
,
S.
, and
Rathore
,
P. K. S.
,
2023
, “
Performance Enhancement of Solar Still for Water Desalination Integrated With Thermal Energy Storage
,”
Mater. Today: Proc.
,
74
(
Part 2
), pp.
202
206
.
5.
Singh
,
S. K.
,
Kaushik
,
S. C.
,
Tyagi
,
V. V.
, and
Tyagi
,
S. K.
,
2021
, “
Comparative Performance and Parametric Study of Solar Still: A Review
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101541
.
6.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2019
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
7.
Jani
,
H. K.
, and
Modi
,
K. V.
,
2018
, “
A Review on Numerous Means of Enhancing Heat Transfer Rate in Solar-Thermal Based Desalination Devices
,”
Renew. Sustain. Energy Rev.
,
93
, pp.
302
317
.
8.
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2022
, “
Combined Enhancement of Evaporation and Condensation Rates in the Solar Still for Augmenting the Freshwater Productivity Using Energy Storage and Natural Fibres
,”
Aqua Water Infrastruct. Ecosyst. Soc.
,
71
(
5
), pp.
628
641
.
9.
Sampathkumar
,
A.
, and
Natarajan
,
S. K.
,
2022
, “
Performance Assessment of Single Slope Solar Still by the Incorporation of Palm Flower Powder and Micro Phase Change Material for the Augmentation of Productivity
,”
Environ. Sci. Pollut. Res.
,
29
(
49
), pp.
73957
73975
.
10.
Attia
,
M. E. H.
,
Driss
,
Z.
,
Kabeel
,
A. E.
,
Alagar
,
K.
,
Athikesavan
,
M. M.
, and
Sathyamurthy
,
R.
,
2021
, “
Phosphate Bags as Energy Storage Materials for Enhancement of Solar Still Performance
,”
Environ. Sci. Pollut. Res.
,
28
(
17
), pp.
21540
21552
.
11.
Dumka
,
P.
,
Kushwah
,
Y.
,
Sharma
,
A.
, and
Mishra
,
D. R.
,
2019
, “
Comparative Analysis and Experimental Evaluation of Single Slope Solar Still Augmented With Permanent Magnets and Conventional Solar Still
,”
Desalination
,
459
, pp.
34
45
.
12.
Kabeel
,
A. E.
,
El-Agouz
,
E.
,
Athikesavan
,
M. M.
,
Duraisamy Ramalingam
,
R.
,
Sathyamurthy
,
R.
,
Prakash
,
N.
, and
Prasad
,
C.
,
2020
, “
Comparative Analysis on Freshwater Yield From Conventional Basin-Type Single Slope Solar Still With Cement-Coated Red Bricks: An Experimental Approach
,”
Environ. Sci. Pollut. Res.
,
27
(
26
), pp.
32218
32228
.
13.
Attia
,
M. E. H.
,
Driss
,
Z.
,
Manokar
,
A. M.
, and
Sathyamurthy
,
R.
,
2020
, “
Effect of Aluminum Balls on the Productivity of Solar Distillate
,”
J. Energy Storage
,
30
, p.
101466
.
14.
Khallaf
,
A. M.
,
El-Sebaii
,
A. A.
, and
Hegazy
,
M. M.
,
2021
, “
Investigation of Thermal Performance of Single Basin Solar Still With Soft Drink Cans Filled With Sand as a Storage Medium
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061011
.
15.
Tei
,
E. A.
,
Hameed
,
R. M. S.
,
Athikesavan
,
M. M.
, and
Srinivasan
,
A.
,
2023
, “
Enhancing the Performance of Conventional Solar Still Using Sensible Heat Energy Storage Materials
,”
Environ. Sci. Pollut. Res.
,
30
(
13
), pp.
39121
39130
.
16.
Vaithilingam
,
S.
,
Muthu
,
V.
,
Athikesavan
,
M. M.
,
Afzal
,
A.
, and
Sathyamurthy
,
R.
,
2022
, “
Energy and Exergy Analysis of Conventional Acrylic Solar Still With and Without Copper Fins
,”
Environ. Sci. Pollut. Res.
,
29
(
4
), pp.
6194
6204
.
17.
Elashmawy
,
M.
,
2020
, “
Improving the Performance of a Parabolic Concentrator Solar Tracking-Tubular Solar Still (PCST-TSS) Using Gravel as a Sensible Heat Storage Material
,”
Desalination
,
473
, p.
114182
.
18.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2018
, “
Enhancing the Performance of Single Basin Solar Still Using High Thermal Conductivity Sensible Storage Materials
,”
J. Cleaner Prod.
,
183
, pp.
20
25
.
19.
Dhivagar
,
R.
, and
Mohanraj
,
M.
,
2021
, “
Performance Improvements of Single Slope Solar Still Using Graphite Plate Fins and Magnets
,”
Environ. Sci. Pollut. Res.
,
28
(
16
), pp.
20499
20516
.
20.
Behura
,
A.
, and
Gupta
,
H. K.
,
2021
, “
Use of Nanoparticle-Embedded Phase Change Material in Solar Still for Productivity Enhancement
,”
Mater. Today: Proc.
,
45
(
Part 4
), pp.
3904
3907
.
21.
Shoeibi
,
S.
,
Kargarsharifabad
,
H.
, and
Rahbar
,
N.
,
2021
, “
Effects of Nano-enhanced Phase Change Material and Nano-coated on the Performance of Solar Stills
,”
J. Energy Storage
,
42
, p.
103061
.
22.
Saleh
,
B.
,
Essa
,
F. A.
,
Aly
,
A.
,
Alsehli
,
M.
,
Panchal
,
H.
,
Afzal
,
A.
, and
Shanmugan
,
S.
,
2022
, “
Investigating the Performance of Dish Solar Distiller With Phase Change Material Mixed With Al2O3 Nanoparticles Under Different Water Depths
,”
Environ. Sci. Pollut. Res.
,
29
(
19
), pp.
28115
28126
.
23.
Natarajan
,
S. K.
,
Suraparaju
,
S. K.
,
Elavarasan
,
R. M.
,
Pugazhendhi
,
R.
, and
Hossain
,
E.
,
2022
, “
An Experimental Study on Eco-friendly and Cost-Effective Natural Materials for Productivity Enhancement of Single Slope Solar Still
,”
Environ. Sci. Pollut. Res.
,
29
(
2
), pp.
1917
1936
.
24.
Alshqirate
,
A. A.
,
Awad
,
A. S.
,
Al Alawin
,
A.
, and
Essa
,
M. A.
,
2023
, “
Experimental Investigation of Solar Still Productivity Enhancement of Distilled Water by Using Natural Fibers
,”
Desalination
,
553
, p.
116487
.
25.
Kumar
,
R.
,
Mishra
,
D. R.
, and
Dumka
,
P.
,
2024
, “
Improving Solar Still Performance: A Comparative Analysis of Conventional and Honeycomb Pad Augmented Solar Stills
,”
Sol. Energy
,
270
, p.
112408
.
26.
Dhivagar
,
R.
,
Mohanraj
,
M.
, and
Belyayev
,
Y.
,
2021
, “
Performance Analysis of Crushed Gravel Sand Heat Storage and Biomass Evaporator-Assisted Single Slope Solar Still
,”
Environ. Sci. Pollut. Res.
,
28
(
46
), pp.
65610
65620
.
27.
Gnanaraj
,
S. J. P.
, and
Velmurugan
,
V.
,
2022
, “
Experimental Investigation on the Performance of Modified Single Basin Double Slope Solar Stills
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
206
215
.
28.
Gnanaraj
,
S. J. P.
,
Ramachandran
,
S.
, and
Christopher
,
D. S.
,
2018
, “
Enhancing the Productivity of Double-Slope Single-Basin Solar Still With Internal and External Modifications
,”
Int. J. Ambient Energy
,
39
(
8
), pp.
777
782
.
29.
Mevada
,
D.
,
Panchal
,
H.
,
Ahmadein
,
M.
,
Zayed
,
M. E.
,
Alsaleh
,
N. A.
,
Djuansjah
,
J.
,
Moustafa
,
E. B.
,
Elsheikh
,
A. H.
, and
Sadasivuni
,
K. K.
,
2022
, “
Investigation and Performance Analysis of Solar Still With Energy Storage Materials: An Energy-Exergy Efficiency Analysis
,”
Case Stud. Therm. Eng.
,
29
, p.
101687
.
30.
Adamu
,
N. I.
,
Biswal
,
D. K.
,
Pulagam
,
M. K. R.
, and
Rout
,
S. K.
,
2023
, “
Performance Analysis of Solar Desalination System With Thermal Energy Storage Materials
,”
Mater. Today: Proc.
,
74
(
Part 4
), pp.
801
807
.
31.
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
,
Manokar
,
A. M.
,
Sharshir
,
S. W.
,
Essa
,
F. A.
, and
Elshiekh
,
A. H.
,
2020
, “
Experimental Study on Tubular Solar Still Using Graphene Oxide Nano Particles in Phase Change Material (NPCM's) for Fresh Water Production
,”
J. Energy Storage
,
28
, p.
101204
.
32.
Chamkha
,
A. J.
,
Rufuss
,
D. D. W.
,
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
,
Abdelgaid
,
M.
,
Manokar
,
A. M.
, and
Madhu
,
B.
,
2020
, “
Augmenting the Potable Water Produced From Single Slope Solar Still Using CNT-Doped Paraffin Wax as Energy Storage: An Experimental Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
12
), p.
625
.
33.
Dhivagar
,
R.
,
Shoeibi
,
S.
,
Parsa
,
S. M.
,
Hoseinzadeh
,
S.
,
Kargarsharifabad
,
H.
, and
Khiadani
,
M.
,
2023
, “
Performance Evaluation of Solar Still Using Energy Storage Biomaterial With Porous Surface: An Experimental Study and Environmental Analysis
,”
Renew. Energy
,
206
, pp.
879
889
.
34.
Ramzy
,
K.
,
Abdelgaleel
,
M.
,
Kabeel
,
A. E.
, and
Mosalam
,
H.
,
2023
, “
Performance of a Single Slope Solar Still Using Different Porous Absorbing Materials: An Experimental Approach
,”
Environ. Sci. Pollut. Res.
,
30
(
28
), pp.
72398
72414
.
35.
Sakthivel
,
T. G.
,
Arjunan
,
T. V.
,
Natrayan
,
L.
,
Arul Kumar
,
P. V.
,
Patil
,
P. P.
,
Manikandan
,
R.
,
Muniappan
,
A.
, and
Paramasivam
,
P.
,
2022
, “
Experimental Investigation on the Effectiveness of Solar Still and Its Effect on Adsorption With Various Dyes
,”
Adsorpt. Sci. Technol.
,
2022
.
36.
Taghvaei
,
H.
,
Taghvaei
,
H.
,
Jafarpur
,
K.
,
Feilizadeh
,
M.
, and
Estahbanati
,
M. R. K.
,
2015
, “
Experimental Investigation of the Effect of Solar Collecting Area on the Performance of Active Solar Stills With Different Brine Depths
,”
Desalination
,
358
, pp.
76
83
.
37.
El-Sebaey
,
M. S.
,
Ellman
,
A.
,
Hegazy
,
A.
, and
Panchal
,
H.
,
2022
, “
Experimental Study and Mathematical Model Development for the Effect of Water Depth on Water Production of a Modified Basin Solar Still
,”
Case Stud. Therm. Eng.
,
33
, p.
101925
.
38.
Tiwari
,
A. K.
, and
Tiwari
,
G. N.
,
2006
, “
Effect of Water Depths on Heat and Mass Transfer in a Passive Solar Still: In Summer Climatic Condition
,”
Desalination
,
195
(
1–3
), pp.
78
94
.
39.
Sampathkumar
,
A.
,
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2023
, “
Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material—Experimental and Thermo-Economic Assessment
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021005
.
40.
Feilizadeh
,
M.
,
Estahbanati
,
M. R. K.
,
Ahsan
,
A.
,
Jafarpur
,
K.
, and
Mersaghian
,
A.
,
2016
, “
Effects of Water and Basin Depths in Single Basin Solar Stills: An Experimental and Theoretical Study
,”
Energy Convers. Manage.
,
122
, pp.
174
181
.
41.
Elango
,
T.
, and
Murugavel
,
K. K.
,
2015
, “
The Effect of the Water Depth on the Productivity for Single and Double Basin Double Slope Glass Solar Stills
,”
Desalination
,
359
, pp.
82
91
.
42.
Rajamanickam
,
M. R.
,
Velmurugan
,
P.
,
Ragupathy
,
A.
, and
Sivaraman
,
E.
,
2021
, “
Use of Thermal Energy Storage Materials for Enhancement in Distillate Output of Double Slope Solar Still
,”
Mater. Today: Proc.
,
34
(
Part 2
), pp.
416
419
.
43.
Mohiuddin
,
S. A.
,
Kaviti
,
A. K.
,
Atchuta
,
S. R.
,
Sakthivel
,
S.
,
Harish
,
T.
,
Vinay Kumar
,
K.
,
Srinivasa Rao
,
T.
, et al
,
2022
, “
Performance Analysis of Non-contact Nanostructure Solar Desalination System by Varying Water Depth at a Constant Air Gap
,”
Sol. Energy
,
247
, pp.
485
498
.
44.
Nazir
,
H.
,
Batool
,
M.
,
Osorio
,
F. J. B.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Inamuddin
, and
Kannan
,
A. M.
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transfer
,
129
, pp.
491
523
.
45.
Sharshir
,
S. W.
,
Ismail
,
M.
,
Kandeal
,
A. W.
,
Baz
,
F. B.
,
Eldesoukey
,
A.
, and
Younes
,
M. M.
,
2021
, “
Improving Thermal, Economic, and Environmental Performance of Solar Still Using Floating Coal, Cotton Fabric, and Carbon Black Nanoparticles
,”
Sustain. Energy Technol. Assess.
,
48
, p.
101563
.
46.
Hansen
,
R. S.
, and
Murugavel
,
K. K.
,
2017
, “
Enhancement of Integrated Solar Still Using Different New Absorber Configurations: An Experimental Approach
,”
Desalination
,
422
, pp.
59
67
.
47.
Ghougali
,
M.
,
Kabeel
,
A. E.
,
Attia
,
M. E. H.
,
Abdelgaied
,
M.
, and
Sharshir
,
S. W.
,
2024
, “
Assessment of Solar Distillers With Cement Layer and Cement Cylinder Fins as Low-Cost and Locally Available Thermal Storage Materials
,”
Energy Sources Part A
,
46
(
1
), pp.
2993
3006
.
48.
Shoeibi
,
S.
,
Mirjalily
,
S. A. A.
,
Kargarsharifabad
,
H.
,
Panchal
,
H.
, and
Dhivagar
,
R.
,
2022
, “
Comparative Study of Double-Slope Solar Still, Hemispherical Solar Still, and Tubular Solar Still Using Al2O3/Water Film Cooling: A Numerical Study and CO2 Mitigation Analysis
,”
Environ. Sci. Pollut. Res.
,
29
(
13
), pp.
65353
65369
.
49.
Mahala
,
T.
, and
Sharma
,
N.
,
2024
, “
Experimental Investigations of a Novel Solar Still With Heat Storage Materials—Energy, Exergy, Economic and Environmental Analyses
,”
Desalination
,
578
, p.
117467
.
You do not currently have access to this content.