Abstract

This study assesses the feasibility of installing concentrated solar power plants in subtropical South America, particularly in Uruguay, by numerical simulations. Parabolic trough and solar power tower technologies are examined. A comprehensive literature analysis is conducted in order to evaluate initial investment, operation, and maintenance costs. Simulation models are validated in order to ensure results accuracy. The study is focused on the optimization of solar fields and storage sizes for five locations. The target set is to minimize the levelized cost of energy. In addition, energy losses and efficiencies are compared between parabolic trough and solar power tower technologies. Salto region in Uruguay is identified as the most suitable location for concentrated solar power projects. Optimized plants yield solar multiples of 3 or higher for solar power tower and around 4 for parabolic trough, with storage sizes ranging from 12 to 15 h, depending on the location. In Salto, the levelized cost of energy ranges from 148 to 175 USD/MW h for 110 MW solar power tower and from 169 to 220 USD/MW h for 55 MW parabolic trough plants, considering different investment cost scenarios. Levelized cost of energy is comparable for other locations, with a slight increase of approximately 10% for the least favorable location, Rocha. This work shows that while not yet competitive with photovoltaic or wind technologies, concentrated solar power plants show promise against fossil-fueled power plants and are expected to decrease further in cost.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
REN21
,
2019
, “
Renewables 2019 Global Status Report
,”
Technical Report, REN21 Secretariat, Paris
. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf
2.
IRENA
,
2022
, “
Renewable Power Generation Costs in 2021
,”
Technical Report, International Renewable Energy Agency, Abu Dhabi
, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021.pdf?rev=34c22a4b244d434da0accde7de7c73d8
3.
Islam
,
M. T.
,
Huda
,
N.
,
Abdullah
,
A.
, and
Saidur
,
R.
,
2018
, “
A Comprehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
987
1018
.
4.
IRENA
,
2019
, “
Renewable Power Generation Costs in 2018
,”
Technical Report, International Renewable Energy Agency, Abu Dhabi
, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf?rev=7a3b6ab611bd41ab9ec399d2e70eaa31
5.
Alonso
,
R.
,
Bidegain
,
M.
,
Abal
,
G.
, and
Modernell
,
P.
,
2016
, “
Año Meteorológico Típico Para Aplicaciones de Energía Solar - AMTUes Series Horarias Típicas Para 5 Sitios Del Uruguay. Version 2.4
,”
Technical Report, Laboratorio de Energía Solar, UdelaR, Uruguay
. https://hdl.handle.net/20.500.12008/42397
6.
Boukelia
,
T.
,
Mecibah
,
M.
,
Kumar
,
B.
, and
Reddy
,
K.
,
2015
, “
Optimization, Selection and Feasibility Study of Solar Parabolic Trough Power Plants for Algerian Conditions
,”
Energy Convers. Manage.
,
101
, pp.
450
459
.
7.
Dos Santos
,
M. P.
,
Leite
,
L. H. M.
, and
da Silva Reis
,
A.
,
2017
, “
Concentrated Solar Power: Analysis of Economic Aspects in Brazil
,”
2017 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America)
,
Quito, Ecuador
,
Sept. 20–22
, pp.
1
6
.
8.
Praveen
,
R. P.
,
Baseer
,
M.
, and
Sankara
,
N.
,
2018
, “
Design Performance Analysis and Optimization of a 100 MW Concentrated Solar Power Plant With Thermal Energy Storage
,”
Proceedings of the 2018 International Conference on Current Trends Towards Converging Technologies, ICCTCT 2018
,
Coimbatore, India
,
Mar. 1–3
, pp.
1
6
.
9.
Aly
,
A.
,
Bernardos
,
A.
,
Fernandez-Peruchena
,
C. M.
,
Jensen
,
S. S.
, and
Pedersen
,
A. B.
,
2019
, “
Is Concentrated Solar Power (CSP) a Feasible Option for Sub-Saharan Africa?: Investigating the Techno-economic Feasibility of CSP in Tanzania
,”
Renew. Energy
,
135
, pp.
1224
1240
.
10.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Gadalla
,
M.
,
2019
, “
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051006
.
11.
Biboum
,
A. C.
, and
Yilanci
,
A.
,
2021
, “
Thermodynamic and Economic Assessment of Solar Thermal Power Plants for Cameroon
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041004
.
12.
Ghodbane
,
M.
,
Bellos
,
E.
,
Said
,
Z.
,
Boumeddane
,
B.
,
Khechekhouche
,
A.
,
Sheikholeslami
,
M.
, and
Ali
,
Z. M.
,
2021
, “
Energy, Financial, and Environmental Investigation of a Direct Steam Production Power Plant Driven by Linear Fresnel Solar Reflectors
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021008
.
13.
Elfeky
,
K.
, and
Wang
,
Q.
,
2023
, “
Techno-economic Assessment and Optimization of the Performance of Solar Power Tower Plant in Egypt’s Climate Conditions
,”
Energy Convers. Manage.
,
280
, p.
116829
.
14.
Solida
,
2014
, “
Análisis De Pre-Factibilidad Para El Desarrollo De Energía Termosolar En Uruguay
,”
sots1sots150201agme0001-02, Technical Report, Solida Renewable Energies
, http://www.energiasolar.gub.uy/images/Solar%20de%20Concentracion/Consultoria%20Solida%202015/informe%20%20prefactibilidad%20csp.pdf
15.
Ho
,
C. K.
,
2008
, “
Software and Codes for Analysis of Concentrating Solar Power Technologies. Sandia Report sand2008-8053
,”
Technical Report, Sandia National Laboratories
. https://energy.sandia.gov/wp-content/gallery/uploads/SAND2008-8053.pdf
16.
National Renewable Energy Laboratory
,
2017
,
System Advisor Model Version 2017.1.17 (SAM 2017.1.17)
,
National Renewable Energy Laboratory
,
Golden, CO
, https://sam.nrel.gov/
17.
Wagner
,
M.
,
2008
, “
Simulation and Predictive Performance Modeling of Utility-Scale Central Receiver System Power Plants
,”
Master’s thesis
,
University of Winsconsin-Madison
,
Madison, WI
.
18.
National Renewable Energy Laboratory
,
2017
,
System Advisor Model Version 2017.1.17 (SAM 2017.1.17) User Documentation
,
National Renewable Energy Laboratory
,
Golden, CO
, https://sam.nrel.gov/
19.
Wagner
,
M. J.
, and
Gilman
,
P.
,
2011
, “
Technical Manual for the SAM Physical Trough Model
,”
NREL/TP-5500-51825, Technical Report, National Renewable Energy Laboratory (NREL, U.S. Department of Energy)
.
20.
Ghazarian
,
A.
,
2021
, “
Evaluation of Concentrating Solar Power for Their Application in Uruguay
,”
Master’s thesis
,
Facultad de Ingeniería, Universidad de la República
,
Uruguay
. https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/29839/1/GAH21.pdf
21.
State of Uruguay
,
2018
, “
Decree 143/018, Law 16.906 Ley de Inversiones y Promoción Industrial
,”
IMPO, Official Information Center
,
Uruguay
, https://www.impo.com.uy/bases/decretos/143-2018
22.
IRENA
,
2020
, “
Renewable Power Generation Costs in 2019
,”
Technical Report, International Renewable Energy Agency, Abu Dhabi
. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf?rev=77ebbae10ca34ef98909a59e39470906
23.
ADME
,
2020
, “
Informe Anual 2019
,”
Technical Report, Administración del Mercado Eléctrico
. https://adme.com.uy/db-docs/Docs_secciones/nid_526/Informe_Anual_2019.pdf
24.
DNE
,
2020
, “
Balance energético Nacional
,”
Technical Report, Dirección Nacional de Energía, Ministerio de Industria y Energía, Uruguay
. https://ben.miem.gub.uy/descargas/1balance/1-1-Libro-BEN2020.pdf
25.
Mauri
,
M.
,
Elli
,
T.
,
Caviglia
,
G.
,
Uboldi
,
G.
, and
Azzi
,
M.
,
2017
, “
Rawgraphs: A Visualisation Platform to Create Open Outputs
,”
Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, CHItaly’17
,
Cagliari, Italy
,
Sept. 18–20
,
Association for Computing Machinery
,
New York, NY
, pp.
1
5
.
26.
Yang
,
S.
,
Zhu
,
X.
, and
Guo
,
W.
,
2018
, “
Cost–Benefit Analysis for the Concentrated Solar Power in China
,”
J. Electr. Comput. Eng.
,
2018
,
Article ID 4063691
.
27.
Ling-zhi
,
R.
,
Xin-gang
,
Z.
,
Yu-zhuo
,
Z.
, and
Yan-bin
,
L.
,
2018
, “
The Economic Performance of Concentrated Solar Power Industry in China
,”
J. Clean. Prod.
,
205
, pp.
799
813
.
28.
Nadav
,
S.
,
2018
, “
CSP Capex Costs Fall by Almost Half as Developers Shift Towards China and Middle East
,”
Reuters Events, Renewables
, https://www.reutersevents.com/renewables/csp-today/csp-capex-costs-fall-almost-half-developers-shift-towards-china-and-middle-east
29.
Simsek
,
Y.
,
Mata-Torres
,
C.
,
Guzmán
,
A. M.
,
Cardemil
,
J. M.
, and
Escobar
,
R.
,
2018
, “
Sensitivity and Effectiveness Analysis of Incentives for Concentrated Solar Power Projects in Chile
,”
Renew. Energy
,
129
, pp.
214
224
.
30.
Santos
,
J. J.
,
Palacio
,
J. C.
,
Reyes
,
A. M.
,
Carvalho
,
M.
,
Freire
,
A. J.
, and
Barone
,
M. A.
,
2018
, “
Chapter 12—Concentrating Solar Power
,”
Advances in Renewable Energies and Power Technologies
,
I.
Yahyaoui
, ed.,
Elsevier
, pp.
373
402
.
31.
Kulichenko
,
N.
, and
Khanna
,
A.
,
2013
, “
Development of Local Supply Chain (Vol. 2): The Missing Link for Concentrated Solar Power Projects in India
,”
Technical Report, Energy Sector Management Assistance Program (ESMAP), World Bank Group, Washington, DC, Report No. 81536
, http://documents.worldbank.org/curated/en/758361468041467642/The-missing-link-for-concentrated-solar-power-projects-in-India
32.
Boretti
,
A.
,
2018
, “
Cost and Production of Solar Thermal and Solar Photovoltaics Power Plants in the United States
,”
Renew. Energy Focus
,
26
, pp.
93
99
.
33.
National Renewable Energy Laboratory
, “
Concentrating Solar Power Projects
,”
National Renewable Energy Laboratory, Golden, CO
, https://solarpaces.nrel.gov/
You do not currently have access to this content.