Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Structures manufactured from steel comprise up to 40% of a concentrating solar thermal power (CSP) heliostat's cost. Composite structures represent a potential opportunity to reduce this cost. A reference heliostat structural model has been created with a reflector area of 25 m2. The design, constructed of low-carbon steel, provides baseline deflection and stiffness under a 21 m/s operating wind speed. Established roster of suitable metal alternative materials is considered including glass, basalt, and carbon fiber-reinforced polymer (GFRP, BFRP, and CFRP, respectively). Three heliostat components are investigated: the pylon, torque tube, and the purlin–strut assembly. Composite material properties are substituted for those of steel, and the beams are re-sized to match the original steel components’ deflection under given wind loads. Weight and cost changes resulting from this resizing are evaluated. It is found that GFRP and BFRP represent a 3 ×–6 × cost premium for the same operating deflection characteristics as steel across all three investigated component classes; with weight reduction only achieved for the purlin–strut assembly. While CFRP components can achieve approximately 25–75% weight savings depending on the application, this comes with a 9 ×–14 × cost increase over the steel baseline for tube-type structures and roughly 5 × cost increase when replacing c-channel structures. This work does not rule out the possibility of cost savings when the heliostat design and kinematics take advantage of composites' specific properties.

References

1.
Kurup
,
P.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
, “Cost Update: Commercial and Advanced Heliostat Collectors,” NREL Technical Paper No. NREL/TP-7A40-80482, 1847876, MainId:42685.
2.
Murphy
,
C.
,
Sun
,
Y.
,
Cole
,
W. J.
,
Maclaurin
,
G. J.
,
Mehos
,
M. S.
, and
Turchi
,
C. S.
,
2019
, “The Potential Role of Concentrating Solar Power Within the Context of DOE’s 2030 Solar Cost Targets,” NREL Technical Paper No. NREL/TP–6A20-71912, 1491726.
3.
Zhu
,
G.
,
Augustine
,
C.
,
Mitchell
,
R.
,
Muller
,
M.
,
Kurup
,
P.
,
Zolan
,
A.
,
Yellapantula
,
S.
, et al
,
2022
, “Roadmap to Advance Heliostat Technologies for Concentrating Solar-Thermal Power,” NREL Technical Paper No. NREL/TP-5700-83041, 1888029, MainId:83814.
4.
Burolla
,
V.
, and
Delameter
,
W.
,
1982
, “Testing and Evaluation of Second-Generation Heliostat Mirror Modules,” Sandia National Laboratory Technical Paper No. SAND81-8263, 5283275, ON: DE82007934.
5.
Fadlallah
,
S. O.
,
Anderson
,
T. N.
, and
Nates
,
R. J.
,
2022
, “
Fluid-Structure Interaction Analysis of a Lightweight Sandwich Composite Structure for Solar Central Receiver Heliostats
,”
Mech. Based Des. Struct. Mach.
,
51
(
10
), pp.
5737
5766
.
6.
Rajak
,
D. K.
,
Pagar
,
D. D.
,
Menezes
,
P. L.
, and
Linul
,
E.
,
2019
, “
Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications
,”
Polymers
,
11
(
10
), p.
1667
.
7.
Serna Moreno
,
M. C.
,
Romero Gutiérrez
,
A.
, and
Martínez Vicente
,
J. L.
,
2016
, “
Different Response Under Tension and Compression of Unidirectional Carbon Fibre Laminates in a Three-Point Bending Test
,”
Compos. Struct.
,
136
, pp.
706
711
.
8.
Moshir
,
S. K.
,
Hoa
,
S. V.
,
Shadmehri
,
F.
,
Rosca
,
D.
, and
Ahmed
,
A.
,
2020
, “
Mechanical Behavior of Thick Composite Tubes Under Four-Point Bending
,”
Compos. Struct.
,
242
, p.
112097
.
9.
Totry
,
E.
,
González
,
C.
,
Llorca
,
J.
, and
Molina-Aldareguía
,
J. M.
,
2009
, “
Mechanisms of Shear Deformation in Fiber-Reinforced Polymers: Experiments and Simulations
,”
Int. J. Fract.
,
158
(
2
), pp.
197
209
.
10.
Fragoudakis
,
R.
,
2019
, “Strengths and Limitations of Traditional Theoretical Approaches to FRP Laminate Design Against Failure,”
Engineering Failure Analysis
,
K.
Thanapalan
, ed.,
Intech Open Publishing
.
11.
Godat
,
A.
,
Légeron
,
F.
,
Gagné
,
V.
, and
Marmion
,
B.
,
2013
, “
Use of FRP Pultruded Members for Electricity Transmission Towers
,”
Compos. Struct.
,
105
, pp.
408
421
.
12.
Brosius
,
D.
, and
Deo
,
R.
,
2018
, “Impact of Technology Developments on Cost and Embodied Energy of Advanced Polymer Composite Components,” Institute for Advanced Composites Manufacturing Innovation Technical Paper No. IACMI/0001-2018/2.5, https://www.osti.gov/biblio/1437162/
13.
Lee
,
Y.-G.
,
Joo
,
H.-J.
, and
Yoon
,
S.-J.
,
2014
, “
Design and Installation of Floating Type Photovoltaic Energy Generation System Using FRP Members
,”
Sol. Energy
,
108
, pp.
13
27
.
14.
Kim
,
S.-H.
,
Yoon
,
S.-J.
, and
Choi
,
W.
,
2017
, “
Design and Construction of 1 MW Class Floating PV Generation Structural System Using FRP Members
,”
Energies
,
10
(
8
), p.
1142
.
15.
Coventry
,
J.
,
Campbell
,
J.
,
Xue
,
Y.
,
Hall
,
C.
,
Kim
,
J.-S.
,
Pye
,
J.
,
Burgess
,
G.
, et al
,
2016
, “Heliostat Cost Down Scoping Study—Final Report,” ASTRI Technical Report No. STG-3261 Rev 01, https://astri.org.au/wp-content/uploads/2014/11/ASTRI-Heliostat-Cost-Down-Scoping-Study-%E2%80%93-Final-Report.pdf
16.
Nieffer
,
D.
,
Effertz
,
T.
,
Macke
,
A.
,
Röger
,
M.
,
Weinrebe
,
G.
, and
Ulmer
,
S.
,
2019
, “
Heliostat Testing According to SolarPACES Task III Guideline
,”
Proceedings of the International Conference on Concentrating Solar Power and Chemical Energy Systems (SOLARPACES 2018)
, Vol. 2126,
Casablanca, Morocco
,
Oct. 2–5, 2018
,
AIP
, p.
030039
.
17.
Christian
,
J.
,
Moya
,
A.
,
Ho
,
C.
,
Andraka
,
C.
, and
Yuan
,
J.
,
2015
, “
Probabilistic Analysis to Quantify Optical Performance and Error Budgets for Next Generation Heliostats
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031014
.
18.
Durán
,
R. L.
,
Hinojosa
,
J. F.
, and
Sosa-Flores
,
P.
,
2022
, “
A Novel Approach for Computational Fluid Dynamics Analysis of Mean Wind Loads on Heliostats
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061008
.
19.
Durán
,
R. L.
,
Hinojosa
,
J. F.
,
Maytorena
,
V. M.
, and
Moreno
,
S.
,
2024
, “
Analysis of Aerodynamic Loads on Heliostats at Operation Position Using Large Eddy Simulation and the Consistent Discrete Random Flow Generation Method
,”
ASME J. Sol. Energy Eng.
,
146
(
4
), p.
041003
.
20.
Griffith
,
D. T.
,
Moya
,
A. C.
,
Ho
,
C. K.
, and
Hunter
,
P. S.
,
2015
, “
Structural Dynamics Testing and Analysis for Design Evaluation and Monitoring of Heliostats
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021010
.
21.
Bender
,
W.
,
2013
, “Final Technical Progress Report: Development of Low-Cost Suspension Heliostat,” December 7, 2011–December 6, 2012, NREL Technical Paper No. NREL/SR-5200-57611, 1068630.
22.
Caminos
,
R. A. C.
,
Schmitz
,
P.
,
Atti
,
V.
,
Mahdi
,
Z.
,
Boura
,
C. T.
,
Sattler
,
J. C.
,
Herrmann
,
U.
,
Hilger
,
P.
, and
Dieckmann
,
S.
,
2022
, “
Development of a Micro Heliostat and Optical Qualification Assessment With a 3D Laser Scanning Method
,”
Proceedings of the 26th International Conference on Concentrating Solar Power and Chemical Energy Systems (SOLARPACES 2020)
,
Freiburg, Germany
,
Sept. 28–Oct. 2, 2020
,
AIP
, p.
120008
.
23.
Forman
,
P.
,
Penkert
,
S.
,
Mark
,
P.
, and
Schnell
,
J.
,
2020
, “
Design of Modular Concrete Heliostats Using Symmetry Reduction Methods
,”
Civil Eng. Des.
,
2
(
4
), pp.
92
103
.
24.
Stegall
,
N.
,
2023
, “Composites Review Meeting With Solar Dynamics LLC,” Video Meeting.
25.
Emes
,
M. J.
,
Jafari
,
A.
,
Arjomandi
,
M.
, and
Collins
,
M.
, “Copy-of-astri-heliostat-design-wind-loads-v1d,” University of Adelaide Centre for Energy Technology, https://www.adelaide.edu.au/cet/ua/media/1648/copy-of-astri-heliostat-design-wind-loads-v1d.xlsx, Accessed July 31, 2023.
26.
Emes
,
M. J.
,
Jafari
,
A.
,
Ghanadi
,
F.
, and
Arjomandi
,
M.
,
2019
, “
Hinge and Overturning Moments Due to Unsteady Heliostat Pressure Distributions in a Turbulent Atmospheric Boundary Layer
,”
Sol. Energy
,
193
, pp.
604
617
.
27.
Pfahl
,
A.
,
Buselmeier
,
M.
, and
Zaschke
,
M.
,
2011
, “
Wind Loads on Heliostats and Photovoltaic Trackers of Various Aspect Ratios
,”
Sol. Energy
,
85
(
9
), pp.
2185
2201
.
28.
Hashem
,
Z. A.
, and
Yuan
,
R. L.
,
2001
, “
Short vs. Long Column Behavior of Pultruded Glass-Fiber Reinforced Polymer Composites
,”
Constr. Build. Mater.
,
15
(
8
), pp.
369
378
.
29.
Mone
,
C.
,
Hand
,
M.
,
Bolinger
,
M.
,
Rand
,
J.
,
Heimiller
,
D.
, and
Ho
,
J.
,
2017
, “2015 Cost of Wind Energy Review,” NREL Technical Paper No. NREL/TP-6A20-66861.
30.
Chowdhury
,
I. R.
,
Pemberton
,
R.
, and
Summerscales
,
J.
,
2022
, “
Developments and Industrial Applications of Basalt Fibre Reinforced Composite Materials
,”
J. Compos. Sci.
,
6
(
12
), p.
367
.
31.
“Mechanical Tubing Report,” Metal Center News, www.metalcenternews.com/editorial/current-issue/mechanical-tubing-report/44964, Accessed July 1, 2023.
32.
“Glasforms 1000 Technical Data Sheet,” Last Modified Sept. 26, 2016, https://catalog.ides.com/Datasheet.aspx?I=19843&FMT=PDF&E=301883&SKEY=19843.1484624.239259262%3A2aa25489-ae46-450c-8330-bdfd6bad8aa0&CULTURE=en-US&, Accessed June 21, 2023.
33.
Mottram
,
J. T.
,
2004
, “
Shear Modulus of Standard Pultruded Fiber Reinforced Plastic Material
,”
J. Compos. Constr.
,
8
(
2
), pp.
141
147
.
34.
Protchenko
,
K.
,
Zayoud
,
F.
,
Urbański
,
M.
, and
Szmigiera
,
E.
,
2020
, “
Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars
,”
Materials
,
13
(
24
), p.
5839
.
35.
“Basalt Fiber Properties, Advantages and Disadvantages,” https://www.princelund.com/basalt-fiber.html, Accessed July 1, 2023.
36.
Bussiba
,
A.
,
Gilad
,
I.
,
Lugassi
,
S.
,
David
,
S.
,
Bortman
,
J.
, and
Yosibash
,
Z.
,
2022
, “
Mechanical Response and Fracture of Pultruded Carbon Fiber/Epoxy in Various Modes of Loading
,”
Crystals
,
12
(
6
), p.
850
.
37.
“Glasforms 2000 Technical Data Sheet,” Last Modified Sept. 26, 2016, https://catalog.ides.com/Datasheet.aspx?I=19843&FMT=PDF&E=301884, Accessed June 21, 2023.
You do not currently have access to this content.