Abstract

Design of an additively manufactured molten salt (MS) to supercritical carbon dioxide (sCO2) primary heat exchanger (PHE) for solar thermal power generation is presented. The PHE is designed to handle temperatures up to 720 °C on the MS side and an internal pressure of 200 bar on the sCO2 side. In the core, MS flows through a three-dimensional periodic lattice network, while sCO2 flows within pin arrays. The design includes integrated sCO2 headers located within the MS flow, allowing for a counterflow design of the PHE. The sCO2 headers are configured to enable uniform flow distribution into each sCO2 plate while withstanding an internal pressure of 200 bar and minimizing obstruction to the flow of MS around it. The structural integrity of the design is verified on additively manufactured (AM) 316 stainless steel sub-scale specimens. An experimentally validated, correlation-based sectional PHE core thermofluidic model is developed to study the impact of flow and geometrical parameters on the PHE performance, with varied parameters including the mass flowrate, surface roughness, and PHE dimensions. A process-based cost model is used to determine the impact of parameter variation on build cost. The model results show that a heat exchanger with a power density of 18.6 MW/m3 (including sCO2 header volume) and effectiveness of 0.88 can be achieved at a heat capacity rate ratio of 0.8. The impact of design and AM machine parameters on the cost of the PHE are assessed.

References

1.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,”
National Renewable Energy Laboratory
, Report No. NREL/Tp-5500-67464.
2.
Achkari
,
O.
, and
El Fadar
,
A.
,
2020
, “
Latest Developments on TES and CSP Technologies—Energy and Environmental Issues, Applications and Research Trends
,”
Appl. Therm. Eng
,
167
, p.
114806
.
3.
Azouzoute
,
A.
,
Alami Merrouni
,
A.
, and
Touili
,
S.
,
2020
, “
Overview of the Integration of CSP as an Alternative Energy Source in the MENA Region
,”
Energy Strategy Rev.
,
29
, p.
100493
.
4.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
.
5.
Aakre
,
S.
, and
Anderson
,
M.
,
2022
, “
Pressure Drop and Heat Transfer Characteristics of Nitrate Salt and Supercritical CO2 in a Diffusion-Bonded Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
189
, p.
122691
.
6.
Yao
,
Y.
,
Ding
,
J.
,
Zhang
,
Y.
,
Wang
,
W.
, and
Lu
,
J.
,
2022
, “
Heat Transfer Performance of Pillow Plate Heat Exchanger With Molten Salt and Supercritical Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
183
(
Part C
), p.
122211
.
7.
Shi
,
H. Y.
,
Li
,
M.-J.
,
Wang
,
W.-Q.
,
Qiu
,
Y.
, and
Tao
,
W.-Q.
,
2020
, “
Heat Transfer and Friction of Molten Salt and Supercritical CO2 Flowing in an Airfoil Channel of a Printed Circuit Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
150
, p.
119006
.
8.
Wang
,
W.-Q.
,
Qiu
,
Y.
,
He
,
Y.-L.
, and
Shi
,
H.-Y.
,
2019
, “
Experimental Study on the Heat Transfer Performance of a Molten-Salt Printed Circuit Heat Exchanger With Airfoil Fins for Concentrating Solar Power
,”
Int. J. Heat Mass Transfer
,
135
, pp.
837
846
.
9.
Caccia
,
M.
,
Tabandeh-Khorshid
,
M.
,
Itskos
,
G.
,
Strayer
,
A. R.
,
Caldwell
,
A. S.
,
Pidaparti
,
S.
,
Singnisai
,
S.
, et al
,
2018
, “
Ceramic–Metal Composites for Heat Exchangers in Concentrated Solar Power Plants
,”
Nature
,
562
, pp.
406
409
.
10.
Montes
,
M. J.
,
Linares
,
J. I.
,
Barbero
,
R.
, and
Rovira
,
A.
,
2020
, “
Proposal of a New Design of Source Heat Exchanger for the Technical Feasibility of Solar Thermal Plants Coupled to Supercritical Power Cycles
,”
Sol. Energy
,
211
, pp.
1027
1041
.
11.
Singh
,
D.
,
Yu
,
W.
,
France
,
D.
,
Allred
,
T.
,
Liu
,
I.-H.
,
Du
,
W.
,
Barua
,
B.
, and
Messner
,
M.
,
2020
, “
One Piece Ceramic Heat Exchanger for Concentrating Solar Power Electric Plants
,”
Renewable Energy
,
160
, pp.
1308
1315
.
12.
Du
,
W.
,
Yu
,
W.
,
France
,
D.
,
Singh
,
M.
, and
Singh
,
D.
,
2022
, “
Additive Manufacturing and Testing of a Ceramic Heat Exchanger for High-Temperature and High-Pressure Applications for Concentrating Solar Power
,”
Sol. Energy
,
236
, pp.
654
665
.
13.
Gerstler
,
W.
, and
Erno
,
D.
,
2017
, “
Introduction of an Additively Manufactured Multi-Furcating Heat Exchanger
,”
Proceedings of the 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Orlando, FL
,
May 30–June 2
,
IEEE
, pp.
624
633
.
14.
Zhang
,
X.
,
Tiwari
,
R.
,
Shooshtari
,
A.
, and
Ohadi
,
M.
,
2018
, “
An Additively Manufactured Metallic Manifold-Microchannel Heat Exchanger for High Temperature Applications
,”
Appl. Therm. Eng.
,
143
, pp.
899
908
.
15.
El Achkar
,
G.
,
Septet
,
C.
,
Le Metayer
,
O.
, and
Hugo
,
J.-M.
,
2022
, “
Experimental Thermohydraulic Characterisation of Flow Boiling and Condensation in Additive Manufactured Plate-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
199
, p.
Article 123465
.
16.
Ning
,
J.
,
Wang
,
X.
,
Sun
,
Y.
,
Zheng
,
C.
,
Zhang
,
S.
,
Zhao
,
X.
,
Liu
,
C.
, and
Yan
,
W.
,
2022
, “
Experimental and Numerical Investigation of Additively Manufactured Novel Compact Plate-fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
190
, p.
122818
.
17.
Kelly
,
J. P.
,
Finkenauer
,
L. R.
,
Roy
,
P.
,
Stolaroff
,
J. K.
,
Nguyen
,
D. T.
,
Ross
,
M. S.
,
Hoff
,
A. T.
, and
Haslam
,
J.
,
2022
, “
Binder Jet Additive Manufacturing of Ceramic Heat Exchangers for Concentrating Solar Power Applications With Thermal Energy Storage in Molten Chlorides
,”
Addit. Manuf.
,
56
, p.
102937
.
18.
Tano
,
I.-N.
,
Rasouli
,
E.
,
Ziev
,
T.
,
Wu
,
Z.
,
Lamprinakos
,
N.
,
Seo
,
J.
,
Schulze Balhorn
,
L.
,
Vaishnav
,
P.
,
Rollett
,
A.
, and
Narayanan
,
V.
,
2021
, “
An Additively-Manufactured Molten Salt-to-Supercritical Carbon Di-Oxide Primary Heat Exchanger For Solar Thermal Power Generation—Design And Techno-Economic Performance
,”
Sol. Energy
,
234
, pp.
152
169
.
20.
Li
,
M.
,
Zhang
,
X.
,
Chen
,
W.-Y.
, and
Heidet
,
F.
,
2020
, “
Progress Report on the Assessment of the Material Performance for TCR Applications
,” Report No. ANL/NSE-20/42.
21.
Ansys Fluent
,
Release 2023 R1, Help System, User Inputs for Porous Media, ANSYS, Inc
., http://www.ansys.com/academic/terms-and-conditions.
22.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
23.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Micropin–Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
141
153
.
24.
Rasouli
,
E.
,
Naderi
,
C.
, and
Narayanan
,
V.
,
2018
, “
Pitch and Aspect Ratios Effects on Single-Phase Heat Transfer Through Microscale Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
118
, pp.
416
428
.
25.
Moores
,
K. A.
, and
Joshi
,
Y. K.
,
2003
, “
Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
999
1006
.
26.
Short
,
B. E.
,
Raad
,
P. E.
, and
Price
,
D. C.
,
2002
, “
Performance of Pin Fin Cast Aluminum Cold Walls, Part. 1: Friction Factor Correlations
,”
J. Thermophys. and Heat Transfer
,
16
(
3
), pp.
389
396
.
27.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
(
1972
), pp.
93
160
.
28.
Wang
,
X.
,
Del Rincon
,
J.
,
Li
,
P.
,
Zhao
,
Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041005
.
29.
Ziev
,
T.
,
Rasouli
,
E.
,
Tano
,
I.-N.
,
Wu
,
Z.
,
Yarasi
,
S. R.
,
Lamprinakos
,
N.
,
Seo
,
J.
,
Narayanan
,
V.
,
Rollett
,
A. D.
, and
Vaishnav
,
P.
,
2023
, “
Cost of Using Laser Powder Bed Fusion to Fabricate a Molten Salt-to-Supercritical Carbon Dioxide Heat Exchanger for Concentrating Solar Power
,”
3D Print. Addit. Manuf.
,
10
(
3
).
You do not currently have access to this content.