Abstract

In this study, the implementation of data-driven machine learning (ML) models for design analysis and performance prediction of evacuated U-tube solar collectors (ETSCs) is investigated for the first time. Although evacuated U-tube solar collectors are widely investigated both numerically and experimentally, the implementation of data-driven machine learning models as an efficient predictive tool was not explored for the ETSC. So, to fill this literature gap, seven ML models such as linear regression with repeated K-fold cross-validation (LR), K-nearest neighbors (KNNs), principal component analysis (PCA), partial least-square regression-I (PLSR-I), partial least-square regression-II (PLSR-II), support vector regression (SVR), and stochastic gradient descent regression (SGDR) are employed using three hundred experimental data points and are reported in the literature. The heat transfer fluid outlet temperature (Thtf,o), thermal energy gained by heat transfer fluid (Q˙htf), and ETSC efficiency (ɳETSC) are considered as output/performance parameters. The outcome of the predicted results suggests that the SGDR ML model is superior in predicting all the performance parameters showing R2 values of 0.98, 0.981, and 0.99 for “Thtf,o,” “Q˙htf,” and “ɳETSC,” respectively. Moreover, the KNN ML model showed weaker performance for predicting the output parameters. In addition, it is observed that the SGDR ML model has a low training time of 0.45 s when compared to other ML models. For the given operating range, the predicted optimal performance parameters such as “Thtf,o,” “Q˙htf,” and “ɳETSC” obtained from the SGDR ML model are 45 °C, 0.44 kW, and 71%, respectively. Furthermore, the recommendations and shortcomings associated with the ML models for the design and performance optimization of ETSC are also presented in detail.

References

1.
Edenhofer
,
O.
,
Pichs-Madruga
,
R.
,
Sokona
,
Y.
,
Seyboth
,
K.
,
Kadner
,
S.
,
Zwickel
,
T.
,
Eickemeier
,
P.
,
Hansen
,
G.
,
Schlömer
,
S.
,
von Stechow
,
C.
, and
Matschoss
,
P.
, eds.,
2011
,
Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge
.
2.
Kung
,
C. C.
, and
McCarl
,
B. A.
,
2018
, “
Sustainable Energy Development Under Climate Change
,”
Sustainability
,
10
(
9
), p.
3269
.
3.
Satam
,
A. A.
,
2014
, “
A Descriptive Study of the Constructional Features of Evacuated Tube Solar Water Heating System
,”
IOSR J. Mech. Civ. Eng.
,
6
(
55
), pp.
36
41
.
4.
Naik
,
B. K.
,
Bhowmik
,
M.
, and
Muthukumar
,
P.
,
2019
, “
Experimental Investigation and Numerical Modelling on the Performance Assessments of Evacuated U-Tube Solar Collector Systems
,”
Renew. Energy
,
134
(
4
), pp.
1344
1361
.
5.
Kiran Naik
,
B.
,
Premnath
,
S.
, and
Muthukumar
,
P.
,
2021
, “
Performance Comparison of Evacuated U-Tube Solar Collector Integrated Parabolic Reflector With Conventional Evacuated U-Tube Solar Collector
,”
Sādhanā
,
46
(
3
), pp.
1
11
.
6.
Mishra
,
D.
, and
Saikhedkar
,
N. K.
,
2014
, “
A Study and Theoretical Analysis of Evacuated Tube Collectors as Solar Energy Conversion Device for Water Heating
,”
Adv. Phys. Lett.
,
1
(
3
), pp.
26
35
.
7.
Liang
,
R.
,
Ma
,
L.
,
Zhang
,
J.
, and
Zhao
,
D.
,
2011
, “
Theoretical and Experimental Investigation of the Filled-Type Evacuated Tube Solar Collector With U Tube
,”
Sol. Energy
,
85
(
9
), pp.
1735
1744
. .
8.
Gorjian
,
S.
,
Ebadi
,
H.
,
Calise
,
F.
,
Shukla
,
A.
, and
Ingrao
,
C.
,
2020
, “
A Review on Recent Advancements in Performance Enhancement Techniques for Low-Temperature Solar Collectors
,”
Energy Convers. Manage.
,
222
(
10
), p.
113246
.
9.
Abo-Elfadl
,
S.
,
Hassan
,
H.
, and
El-Dosoky
,
M. F.
,
2020
, “
Energy and Exergy Assessment of Integrating Reflectors on Thermal Energy Storage of Evacuated Tube Solar Collector-Heat Pipe System
,”
Sol. Energy
,
209
(
10
), pp.
470
484
.
10.
Naik
,
B. K.
,
Varshney
,
A.
,
Muthukumar
,
P.
, and
Somayaji
,
C.
,
2016
, “
Modelling and Performance Analysis of U Type Evacuated Tube Solar Collector Using Different Working Fluids
,”
Energy Procedia
,
90
(
10
), pp.
227
237
.
11.
Naik
,
B. K.
, and
Muthukumar
,
P.
,
2019
, “
Performance Assessment of Evacuated U-Tube Solar Collector: A Numerical Study
,”
Sādhanā
,
44
(
1
), pp.
1
13
.
12.
Ma
,
L.
,
Lu
,
Z.
,
Zhang
,
J.
, and
Liang
,
R.
,
2010
, “
Thermal Performance Analysis of the Glass Evacuated Tube Solar Collector With U-Tube
,”
Build. Environ.
,
45
(
9
), pp.
1959
1967
.
13.
Kumar
,
R.
,
Sharma
,
R.
,
Kumar
,
D.
,
Singh
,
A. R.
,
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2020
, “
Characteristic Equation Development for Single-Slope Solar Distiller Unit Augmented With N Identical Parabolic Concentrator Integrated Evacuated Tubular Collectors
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021011
.
14.
Tong
,
Y.
, and
Cho
,
H.
,
2015
, “
Comparative Study on the Thermal Performance of Evacuated Solar Collectors With U-Tubes and Heat Pipes
,”
Int. J. Air-Cond. Refrig.
,
23
(
3
), p.
1550019
.
15.
Tong
,
Y.
,
Kim
,
J.
, and
Cho
,
H.
,
2015
, “
Effects of Thermal Performance of Enclosed-Type Evacuated U-Tube Solar Collector With Multi-Walled Carbon Nanotube/Water Nanofluid
,”
Renew. Energy
,
83
(
11
), pp.
463
473
.
16.
Kaya
,
H.
,
Eltugral
,
N.
,
Kurukavak
,
A.
, and
Arslan
,
K.
,
2019
, “
Efficiency Assessment of an Evacuated U-Tube Solar Collector Using Silver Nanofluid
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061016
.
17.
Kizilkan
,
O.
, and
Yamaguchi
,
H.
,
2019
, “
Thermal Modeling and Performance Analysis of U-Tube Evacuated Solar Collector Using CO2
,”
J. Sol. Energy Res. Updates
,
6
(
9
), pp.
69
77
.
18.
Kumar
,
A.
,
Tiwari
,
A. K.
, and
Said
,
Z.
,
2021
, “
A Comprehensive Review Analysis on Advances of Evacuated Tube Solar Collector Using Nanofluids and PCM
,”
Sustain. Energy Technol. Assess.
,
47
(
10
), p.
101417
.
19.
Papadimitratos
,
A.
,
Sobhansarbandi
,
S.
,
Pozdin
,
V.
,
Zakhidov
,
A.
, and
Hassanipour
,
F.
,
2016
, “
Evacuated Tube Solar Collectors Integrated With Phase Change Materials
,”
Sol. Energy
,
129
(
5
), pp.
10
19
.
20.
Mehla
,
N.
,
Kumar
,
M.
, and
Yadav
,
A.
,
2020
, “
Annual Performance Evaluation of Evacuated Tube Solar Air Collector With Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031007
.
21.
Farjallah
,
R.
,
Chaabane
,
M.
,
Mhiri
,
H.
,
Bournot
,
P.
, and
Dhaouadi
,
H.
,
2016
, “
Thermal Performance of the U-Tube Solar Collector Using Computational Fluid Dynamics Simulation
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061008
.
22.
Dami
,
K. E.
,
Beltran-Chacon
,
R.
,
Islas
,
S.
, and
Leal-Chavez
,
D.
,
2021
, “
Numerical Simulation of Direct Solar Vapor Generation of Acetone for an Organic Rankine Cycle Using an Evacuated Tube Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021010
.
23.
Kumar
,
L.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2022
, “
Real-Time Experimental Performance Assessment of a Photovoltaic Thermal System Cascaded With Flat Plate and Heat Pipe Evacuated Tube Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011004
.
24.
Rodriguez
,
J. D.
,
Perez
,
A.
, and
Lozano
,
J. A.
,
2009
, “
Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
3
), pp.
569
575
.
25.
Kiran Naik
,
B.
,
Chinthala
,
M.
,
Patel
,
S.
, and
Ramesh
,
P.
,
2021
, “
Performance Assessment of Waste Heat/Solar Driven Membrane-Based Simultaneous Desalination and Liquid Desiccant Regeneration System Using a Thermal Model and KNN Machine Learning Tool
,”
Desalination
,
505
(
6
), p.
114980
.
26.
Faegh
,
M.
,
Behnam
,
P.
,
Shafii
,
M. B.
, and
Khiadani
,
M.
,
2021
, “
Development of Artificial Neural Networks for Performance Prediction of a Heat Pump Assisted Humidification-Dehumidification Desalination System
,”
Desalination
,
508
(
7
), p.
115052
.
27.
Essa
,
F. A.
,
Abd Elaziz
,
M.
, and
Elsheikh
,
A. H.
,
2020
, “
An Enhanced Productivity Prediction Model of Active Solar Still Using Artificial Neural Network and Harris Hawks Optimizer
,”
Appl. Therm. Eng.
,
170
(
4
), p.
115020
.
28.
Elsheikh
,
A. H.
,
Katekar
,
V. P.
,
Muskens
,
O. L.
,
Deshmukh
,
S. S.
,
Abd Elaziz
,
M.
, and
Dabour
,
S. M.
,
2021
, “
Utilization of LSTM Neural Network for Water Production Forecasting of a Stepped Solar Still With a Corrugated Absorber Plate
,”
Process Saf. Environ. Prot.
,
148
(
4
), pp.
273
282
.
29.
Essa
,
F. A.
,
Abd Elaziz
,
M.
, and
Elsheikh
,
A. H.
,
2020
, “
Prediction of Power Consumption and Water Productivity of Seawater Greenhouse System Using Random Vector Functional Link Network Integrated With Artificial Ecosystem-Based Optimization
,”
Process Saf. Environ. Prot.
,
144
(
12
), pp.
322
329
.
30.
Franco
,
I. C.
,
Dall’Agnol
,
M.
,
Costa
,
T. V.
,
Fileti
,
A. M. F.
, and
Silva
,
F. V.
,
2011
, “
A Neuro-Fuzzy Identification of Non-Linear Transient Systems: Application to a Pilot Refrigeration Plant
,”
Int. J. Refrig.
,
34
(
8
), pp.
2063
2075
.
31.
Ahmadi
,
M. H.
,
Baghban
,
A.
,
Sadeghzadeh
,
M.
,
Zamen
,
M.
,
Mosavi
,
A.
,
Shamshirband
,
S.
,
Kumar
,
R.
, and
Mohammadi-Khanaposhtani
,
M.
,
2020
, “
Evaluation of Electrical Efficiency of Photovoltaic Thermal Solar Collector
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
545
565
.
32.
Mojumder
,
J. C.
,
Ong
,
H. C.
,
Chong
,
W. T.
,
Izadyar
,
N.
, and
Shamshirband
,
S.
,
2017
, “
The Intelligent Forecasting of the Performances in PV/T Collectors Based on Soft Computing Method
,”
Renew. Sustain. Energy Rev.
,
72
(
5
), pp.
1366
1378
.
33.
Liu
,
Z.
,
Li
,
H.
,
Zhang
,
X.
,
Jin
,
G.
, and
Cheng
,
K.
,
2015
, “
Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine
,”
Energies
,
8
(
8
), pp.
8814
8834
.
34.
Naik
,
B. K.
,
2019
, “
Design and Performance Assessments of Solar Driven Liquid Desiccant Air Conditioning System Components
,”
Doctoral dissertation
,
Indian Institute of Technology Guwahati, Guwahati
.
35.
Ghosh
,
S.
,
Dasgupta
,
A.
, and
Swetapadma
,
A.
,
2019
, “
A Study on Support Vector Machine Based Linear and Non-Linear Pattern Classification
,”
2019 International Conference on Intelligent Sustainable Systems (ICISS)
,
Palladam, India
,
Feb. 21–22
, IEEE, pp.
24
28
.
36.
Kumari
,
K.
, and
Yadav
,
S.
,
2018
, “
Linear Regression Analysis Study
,”
J. Pract. Cardiovasc. Sci.
,
4
(
1
), p.
33
.
37.
Guo
,
G.
,
Wang
,
H.
,
Bell
,
D.
,
Bi
,
Y.
, and
Greer
,
K.
,
2003Nov.
, “
KNN Model-Based Approach in Classification
,”
OTM Confederated International Conferences “On the Move to Meaningful Internet Systems,”
Catania, Sicily, Italy
,
Nov. 3–7
, Springer, Berlin, pp.
986
996
.
38.
Shlens
,
J.
,
2014
, “
A Tutorial on Principal Component Analysis
,” Computer Science, Cornell University,
arXiv:1404.1100
,
1
(
4
), pp.
1
12
.
39.
Risvik
,
H.
,
2007
, “
Principal Component Analysis (PCA) & NIPALS Algorithm
,” Report 1, 6, May, https://studylib.net/doc/11558190/principal-component-analysis–pca–andamp%3B-nipals-algorithm
40.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
, and
Blondel
,
M.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
11
), pp.
2825
2830
.
41.
Liu
,
W.
,
Liang
,
S.
, and
Qin
,
X.
,
2022
, “
Weighted p-Norm Distance t Kernel SVM Classification Algorithm Based on Improved Polarization
,”
Sci. Rep.
,
12
(
1
), pp.
1
16
.
42.
Bottou
,
L.
,
2010
, “
Large-Scale Machine Learning With Stochastic Gradient Descent
,”
Proceedings of COMPSTAT'2010
,
Paris, France
,
Aug. 22–27
, pp.
177
186
.
43.
Minh
,
H. Q.
,
Niyogi
,
P.
, and
Yao
,
Y.
,
2006
, “
Mercer’s Theorem, Feature Maps, and Smoothing
,”
International Conference on Computational Learning Theory
,
Pittsburgh, PA
,
June 22–25
, Berlin, pp.
154
168
.
You do not currently have access to this content.