Abstract

This paper proposes a novel algorithm to combine two or more techniques of maximum power point tracking (MPPT) to increase the output dc power and the efficiency of photovoltaic (PV) arrays. Different MPPT methods have dissimilar responses for the same environmental circumstances. The combination of multiple methods has the advantage of ever acquiring maximum power as the environmental conditions change. The proposed algorithm is used to enhance the selection of the most suitable duty cycle of the combined methods, based on the power-voltage characteristics, to get the best tracking response. Multiple classical and/or artificial intelligence (AI)-based MPPT methods can be combined based on this selection algorithm. To demonstrate its effectiveness, two examples are illustrated. The first one is the combination of two classical MPPT methods, which are the incremental conductance (INC) and the perturb-and-observe (P&O). The second example is to combine two AI-based MPPT, which are the artificial neural network (ANN) and the fuzzy logic control (FLC). The simulation results of the application of the proposed algorithm to a grid-connected PV system model justify its capability to acquire better static and dynamic responses than the responses of individual MPPT methods.

References

References
1.
Esram
,
T.
, and
Chapman
,
P. L.
,
2007
, “
Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques
,”
IEEE Trans. Energy Conversion
,
22
(
2
), pp.
439
449
. 10.1109/TEC.2006.874230
2.
Sera
,
D.
,
Mathe
,
L.
,
Kerekes
,
T.
,
Spataru
,
S. V.
, and
Teodorescu
,
R.
,
2013
, “
On the Perturb-and-Observe and Incremental Conductance Mppt Methods for PV Systems
,”
IEEE J. Photovoltaics
,
3
(
3
), pp.
1070
1078
. 10.1109/JPHOTOV.2013.2261118
3.
Subudhi
,
B.
, and
Pradhan
,
R.
,
2013
, “
A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems
,”
IEEE Trans. Sustainable Energy
,
4
(
1
), pp.
89
98
. 10.1109/TSTE.2012.2202294
4.
Liu
,
Y.-H.
,
Chen
,
J.-H.
, and
Huang
,
J.-W.
,
2015
, “
A Review of Maximum Power Point Tracking Techniques for Use in Partially Shaded Conditions
,”
Renewable. Sustainable. Energy. Rev.
,
41
, pp.
436
453
. 10.1016/j.rser.2014.08.038
5.
Seyedmahmoudian
,
M.
,
Horan
,
B.
,
Soon
,
T. K.
,
Rahmani
,
R.
,
Than Oo
,
A. M.
,
Mekhilef
,
S.
, and
Stojcevski
,
A.
,
2016
, “
State of the Art Artificial Intelligence-Based MPPT Techniques for Mitigating Partial Shading Effects on PV Systems A Review
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
435
455
. 10.1016/j.rser.2016.06.053
6.
Bahgat
,
A.
,
Helwa
,
N.
,
Ahmad
,
G.
, and
El Shenawy
,
E.
,
2005
, “
Maximum Power Point Traking Controller for PV Systems Using Neural Networks
,”
Renew. Energy
,
30
(
8
), pp.
1257
1268
. 10.1016/j.renene.2004.09.011
7.
Ali
,
M. N.
,
2018
, “
Improved Design of Artificial Neural Network for MPPT of Grid-Connected PV Systems
,”
IEEE Proceedings of the 20th International Middle East Power Systems Conference MEPCON’2018
,
Cairo, Egypt
,
Dec. 18–20
, pp.
102
107
.
8.
Ramaprabha
,
R.
,
Gothandaraman
,
V.
,
Kanimozhi
,
K.
,
Divya
,
R.
, and
Mathur
,
B.
,
2011
, “
Maximum Power Point Tracking Using Ga-Optimized Artificial Neural Network for Solar Pv System
,”
First International Conference on Electrical Energy Systems (ICEES)
,
Newport Beach, CA
, IEEE, pp.
264
268
.
9.
Messai
,
A.
,
Mellit
,
A.
,
Guessoum
,
A.
, and
Kalogirou
,
S.
,
2011
, “
Maximum Power Point Tracking Using a GA Optimized Fuzzy Logic Controller and Its FPGA Implementation
,”
Sol. Energy.
,
85
(
2
), pp.
265
277
. 10.1016/j.solener.2010.12.004
10.
Titri
,
S.
,
Larbes
,
C.
,
Toumi
,
K. Y.
, and
Benatchba
,
K.
,
2017
, “
A New Mppt Controller Based on the Ant Colony Optimization Algorithm for Photovoltaic Systems Under Partial Shading Conditions
,”
Appl. Soft. Comput.
,
58
, pp.
465
479
. 10.1016/j.asoc.2017.05.017
11.
Liu
,
Y.-H.
,
Huang
,
S.-C.
,
Huang
,
J.-W.
, and
Liang
,
W.-C.
,
2012
, “
A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Partially Shaded Conditions
,”
IEEE Trans. Energy Conversion
,
27
(
4
), pp.
1027
1035
. 10.1109/TEC.2012.2219533
12.
Sundareswaran
,
K.
,
Vignesh kumar
,
V.
, and
Palani
,
S.
,
2015
, “
Application of a Combined Particle Swarm Optimization and Perturb and Observe Method for MPPT in PV Systems Under Partial Shading Conditions
,”
Renew. Energy
,
75
, pp.
308
317
. 10.1016/j.renene.2014.09.044
13.
Manimekalai
,
P.
,
Hari Kumar
,
R.
, and
Raghavan
,
S.
,
2015
, “
Enhancement of Fuzzy Controlled Photovoltaic?Diesel System With Battery Storage Using Interleaved Converter With Hybrid MPPT for Rural Home
,”
ASME J. Sol. Energy. Eng.
,
137
(
6
), p.
061005
. 10.1115/1.4031514
14.
Çelik
,
Ö.
, and
Teke
,
A.
,
2017
, “
A Hybrid MPPT Method for Grid Connected Photovoltaic Systems Under Rapidly Changing Atmospheric Conditions
,”
Electric Power Syst. Res.
,
152
, pp.
194
210
. 10.1016/j.epsr.2017.07.011
15.
Goud
,
J. S.
,
Kalpana
,
R.
, and
Singh
,
B.
,
2018
, “
A Hybrid Global Maximum Power Point Tracking Technique with Fast Convergence Speed for Partial-Shaded PV Systems
,”
IEEE. Trans. Ind. Appl.
,
54
(
5
), pp.
5367
5376
. 10.1109/TIA.2018.2845415
16.
Bataineh
,
K.
,
2019
, “
Improved Hybrid Algorithms-Based MPPT Algorithm for PV System Operating Under Severe Weather Conditions
,”
IET Power Electron.
,
12
(
4
), pp.
703
711
. 10.1049/iet-pel.2018.5651
17.
Azevedo
,
G. M. S.
,
Cavalcanti
,
M. C.
,
Oliveira
,
K. C.
,
Neves
,
F. A. S.
, and
Lins
,
Z. D.
,
2009
, “
Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031006
. 10.1115/1.3142827
18.
Reisi
,
A. R.
,
Moradi
,
M. H.
, and
Jamasb
,
S.
,
2013
, “
Classification and Comparison of Maximum Power Point Tracking Techniques for Photovoltaic System: A Review
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
433
443
. 10.1016/j.rser.2012.11.052
19.
Bendib
,
B.
,
Belmili
,
H.
, and
Krim
,
F.
,
2015
, “
A Survey of the Most Used MPPT Methods: Conventional and Advanced Algorithms Applied for Photovoltaic Systems
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
637
648
. 10.1016/j.rser.2015.02.009
20.
Rezk
,
H.
, and
Eltamaly
,
A. M.
,
2015
, “
A Comprehensive Comparison of Different MPPT Techniques for Photovoltaic Systems
,”
Sol. Energy
,
112
, pp.
1
11
. 10.1016/j.solener.2014.11.010
21.
Poltronieri Sampaio
,
L.
,
Vichoski da Rocha
,
M.
,
Oliveira da Silva
,
S. A.
, and
Hideo Takami de Freitas
,
M.
,
2019
, “
Comparative Analysis of Mppt Algorithms Bio-Inspired by Grey Wolves Employing a Feed-Forward Control Loop in a Three-Phase Grid-Connected Photovoltaic System
,”
IET Renew. Power Gen.
,
13
(
8
), pp.
1379
1390
. 10.1049/iet-rpg.2018.5941
22.
Podder
,
A. K.
,
Roy
,
N. K.
, and
Pota
,
H. R.
,
2019
, “
Mppt Methods for Solar Pv Systems: a Critical Review Based on Tracking Nature
,”
IET Renew. Power Gen.
,
13
(
10
), pp.
1615
1632
. 10.1049/iet-rpg.2018.5946
23.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2020
, “
Advanced Solar MPPT Techniques Under Uniform and Non-Uniform Irradiance: A Comprehensive Review
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
040801
. 10.1115/1.4046090
24.
Dorofte
,
C.
,
Borup
,
U.
, and
Blaabjerg
,
F.
,
2005
, “
A Combined Two-Method MPPT Control Scheme for Grid-Connected Photovoltaic Systems
,”
In 2005 European IEEE Conference on Power Electronics and Applications
,
Dresden, Germany
, p.
10
.
25.
Vincheh
,
M. R.
,
Kargar
,
A.
, and
Markadeh
,
G. A.
,
2014
, “
A Hybrid Control Method for Maximum Power Point Tracking (MPPT) in Photovoltaic Systems
,”
Arabian J. Sci. Eng.
,
39
(
6
), pp.
4715
4725
. 10.1007/s13369-014-1056-0
26.
Tang
,
S.
,
Sun
,
Y.
,
Chen
,
Y.
,
Zhao
,
Y.
,
Yang
,
Y.
, and
Szeto
,
W.
,
2017
, “
An Enhanced Mppt Method Combining Fractional-Order and Fuzzy Logic Control
,”
IEEE J. Photovoltaics
,
7
(
2
), pp.
640
650
. 10.1109/JPHOTOV.2017.2649600
27.
Averbukh
,
M.
,
Ben-Galim
,
Y.
, and
Uhananov
,
A.
,
2012
, “
Development of a Quick Dynamic Response Maximum Power Point Tracking Algorithm for Off-Grid System With Adaptive Switching (On?Off) Control of DC/DC Converter
,”
ASME J. Sol. Energy. Eng.
,
135
(
2
), p.
021003
. 10.1115/1.4007852
28.
Mahmoud
,
Y.
,
Abdelwahed
,
M.
, and
El-Saadany
,
E. F.
,
2015
, “
An Enhanced Mppt Method Combining Model-Based and Heuristic Techniques
,”
IEEE Trans. Sustainable Energy
,
7
(
2
), pp.
576
585
. 10.1109/TSTE.2015.2504504
29.
Sundareswaran
,
K.
,
Vigneshkumar
,
V.
,
Simon
,
S. P.
, and
Nayak
,
P. S. R.
,
2016
, “
Gravitational Search Algorithm Combined With P&O Method for MPPT in PV Systems
,”
2016 IEEE Annual India Conference (INDICON)
,
Bangalore, India
, IEEE, pp.
1
5
.
30.
El Baset Halim
,
A. A.
,
Saad
,
N. H.
, and
Sattar
,
A. A.
,
2019
, “
Application of a Combined System Between Perturb and Observe Method and Incremental Conductance Technique for MPPT in PV Systems
,”
21st International Middle East Power Systems Conference, IEEE, MEPCON 2019
,
Cairo, Egypt
, pp.
103
110
.
31.
Farhan
,
A. F.
,
Feilat
,
E. A.
, and
Al-Salaymeh
,
A. S.
,
2019
, “
Maximum Power Point Tracking Technique Using Combined Perturb & Observe and Owl Search Algorithms
,”
IEEE, International Conference on Electrical and Computing Technologies and Applications (ICECTA)
,
Ras Al Khaimah, United Arab Emirates
, pp.
4
8
.
32.
Wang
,
S.-C.
,
Pai
,
H.-Y.
,
Chen
,
G.-J.
, and
Liu
,
Y.-h.
,
2020
, “
A Fast and Efficient Maximum Power Tracking Combining Simplified State Estimation With Adaptive Perturb and Observe
,”
IEEE Access
,
8
, pp.
155319
155328
. 10.1109/ACCESS.2020.3019197
33.
Femia
,
N.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2012
,
Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems
,
CRC Press
.
34.
Villalva
,
M. G.
,
Gazoli
,
J. R.
,
Filho
,
E. R.
, and
Filho
,
E. F.
,
2009
, “
Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays
,”
Power Electronics, IEEE Trans. on
,
24
(
5
), pp.
1198
1208
. 10.1109/TPEL.2009.2013862
35.
Rekioua
,
D.
, and
Matagne
,
E.
,
2012
,
Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control
,
Springer Science & Business Media
.
36.
Sivanandam
,
S.
,
Sumathi
,
S.
, and
Deepa
,
S.
,
2007
,
Introduction to Fuzzy Logic Using MATLAB
,
Springer
.
37.
Bounechba
,
H.
,
Bouzid
,
A.
,
Nabti
,
K.
, and
Benalla
,
H.
,
2014
, “
Comparison of Perturb & Observe and Fuzzy Logic in Maximum Power Point Tracker for PV Systems
,”
Energy Proc.
,
50
, pp.
677
684
. 10.1016/j.egypro.2014.06.083
38.
Chen
,
Y.-T.
,
Jhang
,
Y.-C.
, and
Liang
,
R.-H.
,
2016
, “
A Fuzzy-Logic Based Auto-Scaling Variable Step-Size Mppt Method for Pv Systems
,”
Sol. Energy
,
126
, pp.
53
63
. 10.1016/j.solener.2016.01.007
39.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
, 2nd ed.,
Prentice Hall
.
40.
Ameen
,
A. M.
,
Pasupuleti
,
J.
,
Khatib
,
T.
,
Elmenreich
,
W.
, and
Kazem
,
H. A.
,
2015
, “
Modeling and Characterization of a Photovoltaic Array Based on Actual Performance Using Cascade-Forward Back Propagation Artificial Neural Network
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041010
. 10.1115/1.4030693
41.
Mellit
,
A.
, and
Pavan
,
A. M.
,
2010
, “
Performance Prediction of 20 kWp Ggrid Connected Photovoltaic Plant at Trieste (Italy) Using Artificial Neural Network
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2431
2441
. 10.1016/j.enconman.2010.05.007
42.
Liu
,
Y.-H.
,
Liu
,
C.-L.
,
Huang
,
J.-W.
, and
Chen
,
J.-H.
,
2013
, “
Neural-Network-Based Maximum Power Point Tracking Methods for Photovoltaic Systems Operating Under Fast Changing Environments
,”
Sol. Energy.
,
89
, pp.
42
53
. 10.1016/j.solener.2012.11.017
You do not currently have access to this content.