Abstract

The motion response of a (NREL) 5 MW wind turbine with tip-fusion winglets in the marine environment were studied in this paper. The aerodynamic performance of the wind turbine in three motion modes of yaw, surge, and pitch is simulated by the fluent software. The variation trend of power and axial thrust of the wind turbine with winglets under the motion conditions is explored, and its flow field is analyzed. The results indicate that the wind turbine with fusion winglets has the better aerodynamic performance. Besides, the effect of the winglet on the aerodynamic performance is mainly concentrated at the tip of the blade, especially at the relative height of 0.9 or above. The research results provide theoretical and technical reference for improving aerodynamic performance of the floating offshore wind turbine by adding tip-fusion winglets under the complex sea states.

References

1.
Ren
,
N.
,
Li
,
Y.
, and
Ou
,
J.
,
2014
, “
Coupled Wind-Wave Time Domain Analysis of Floating Offshore Wind Turbine Based on Computational Fluid Dynamics Method
,”
J. Renewable Sustainable Energy
,
6
(
2
), p.
023106
. 10.1063/1.4870988
2.
Jeon
,
S. H.
,
Cho
,
Y. U.
,
Seo
,
M. W.
,
Cho
,
J. R.
, and
Jeong
,
W. B.
,
2013
, “
Dynamic Response of Floating Substructure of Spar-Type Offshore Wind Turbine With Catenary Mooring Cables
,”
Ocean Eng.
,
72
, pp.
356
364
. 10.1016/j.oceaneng.2013.07.017
3.
Whitcomb
,
R. T.
,
1976
, “
A Design Approach and Selected Wind Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglet
,”
NASA TN-D-8260
.
4.
Van Holten
,
T.
,
1974
, “
Performance Analysis of a Windmill With Increased Power Output Due to Tip Vane Induced Diffusion of the Airstream
,
Memorandum M-224
,
Technische Hogeschool Delft
,
Netherlands
.
5.
Van Bussel
,
G. J. W.
,
1986
, “
Status Report on Tipvane Research
,”
EWEA Conference
,
Rome
, pp.
691
695
.
6.
Van Bussel
,
G. J. W.
,
1992
, “
Use of the Asymptotic Acceleration Potential Method for Horizontal Axis Wind Turbine Rotor Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
161
172
. 10.1016/0167-6105(92)90542-I
7.
Rippel
,
W. E.
, and
Buchanan
,
D.
,
1998
, “
Bidirectional Load and Source Cycler
,” U.S. Patent No. 5,751,150.
8.
Shimizu
,
Y.
,
Ismaili
,
E.
,
Kamada
,
Y.
, and
Maeda
,
T.
,
2003
, “
Power Augmentation of a HAWT by Mie-Type Tip Vanes, Considering Wind Tunnel Flow Visualisation, Blade-Aspect Ratios and Reynolds Number
,”
Wind Eng.
,
27
(
3
), pp.
183
194
. 10.1260/030952403769016663
9.
Congedo
,
P. M.
, and
Grazia
,
D. G. M.
,
2008
, “
Optimizing of a Wind Turbine Rotor by CFD Modeling
,”
ANSYS Italy Conference 2008
,
Mestre, Italy
,
Oct. 16–17
.
10.
Gertz
,
D.
, and
Johnson
,
D. A.
,
2011
, “
An Evaluation Testbed for Alternative Wind Turbine Blade Tip Designs
,”
Int. J. Energy Res.
,
35
(
15
), pp.
1360
1370
. 10.1002/er.1897
11.
Saravanan
,
P.
,
Parammasivam
,
K. M.
, and
Rajan
,
S.
,
2012
, “
Pressure Distribution of Rotating Small Wind Turbine Blades With Winglet Using Wind Tunnel
,”
J. Sci. Ind. Res.
,
71
(
6
), pp.
425
429
.
12.
Ali
,
A.
,
Chowdhury
,
H.
,
Loganathan
,
B.
, and
Alam
,
F.
,
2015
, “
An Aerodynamic Study of a Domestic Scale Horizontal Axis Wind Turbine With Varied Tip Configurations
,”
Procedia Eng.
,
105
, pp.
757
762
. 10.1016/j.proeng.2015.05.067
13.
Elfarra
,
M. A.
,
Sezer-Uzol
,
N.
, and
Akmandor
,
I. S.
,
2014
, “
NREL VI Rotor Blade: Numerical Investigation and Winglet Design and Optimization Using CFD
,”
Wind Eng.
,
17
(
4
), pp.
605
626
. 10.1002/we.1593
14.
Pratilastiarso
,
J.
,
Nugroho
,
S.
,
Tridianto
,
E.
, and
Syifa
,
R. I.
,
2018
, “
Experimental Study on Horizontal Axis Wind Turbine With Splitted Winglets
,”
IOP Conf. Series: Earth Environ. Sci.
,
105
, p.
01210
. 10.1088/1755-1315/105/1/012102
15.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2006
,
Numerical Analysis of Winglets on Wind Turbine Blades Using CFD
,
Wind Energy Department, Risø National Laboratory, Technical University of Denmark, Department of Civil Engineering, Aalborg University
,
Denmark
.
16.
Gertz
,
D.
,
Johnson
,
D. A.
, and
Swytink-Binnema
,
N.
,
2014
, “Comparative Measurements of the Effect of a Winglet on a Wind Turbine,”
Wind Energy—Impact of Turbulence
,
Springer
,
Berlin, Heidelberg
, pp.
121
126
.
17.
Elfarra
,
M. A.
,
Sezer Uzol
,
N.
, and
Akmandor
,
İ. S.
,
2015
, “
Investigations on Blade Tip Tilting for HAWT Rotor Blades Using CFD
,”
Int. J. Green Energy
,
12
(
2
), pp.
125
138
. 10.1080/15435075.2014.889007
18.
Zhu
,
B.
,
Sun
,
X.
,
Wang
,
Y.
, and
Huang
,
D.
,
2017
, “
Performance Characteristics of a Horizontal Axis Turbine With Fusion Winglet
,”
Energy
,
120
, pp.
431
440
. 10.1016/j.energy.2016.11.094
19.
Ostovan
,
Y.
,
Akpolat
,
T.
, and
Uzol
,
O.
,
2019
, “
Experimental Investigation of the Effect of Winglets of the Tip Vortex Behavior of a Model Horizontal Axis Wind Turbine Using Particle Image Velocimetry
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011006
. 10.1115/1.4041154
20.
Ariffudin
,
M. H.
,
Zawawi
,
F. M.
,
Kamar
,
H. M.
, and
Kamsah
,
N.
,
2016
, “
Effectiveness of Blade Tip on Low Speed Horizontal Axis Wind Turbine Performance
,”
J. Teknologi.
,
78
(
8–4
), pp.
31
39
. 10.11113/jt.v78.9582
21.
Nataraj
,
M.
, and
Balaji
,
G.
,
2019
, “
Study on Performance of Wind Mill by Adding Winglet in Turbine Blade: Virtual Analysis
,”
J. Sci. Ind. Res.
,
78
(
2
), pp.
96
101
.
22.
R.
Jones
,
T.
Lasinski
,
1980
, “
Effect of Winglets on the Induced Drag of Ideal Wing Shapes
,”
NASA Technical Memorandum
.
23.
Shimizu
,
Y.
,
Yoshikawa
,
T.
, and
Matsumura
,
S.
,
1994
, “
Power Augmentation Effects of a Horizontal Axis Wind Turbine With a Tip Vane—Part 1: Turbine Performance and Tip Vane Configuration
,”
ASME J. Fluid Eng.
,
116
(
2
), pp.
287
292
. 10.1115/1.2910268
24.
Eppler
,
R.
,
1997
, “
Induced Drag and Winglets
,”
Aerosp. Sci. Technol.
,
1
(
1
), pp.
3
15
. 10.1016/S1270-9638(97)90019-5
25.
Shimizu
,
Y.
,
Ismaili
,
E.
,
Kamada
,
Y.
, and
Maeda
,
T.
,
2003
, “
Rotor Configuration Effects on the Performance of a HAWT With tip-Mounted Mie-Type Vanes
,”
ASME J. Sol. Energy
,
125
(
4
), pp.
441
447
. 10.1115/1.1621671
26.
Gaunaa
,
M.
, and
Johansen
,
J.
,
2007
, “
Determination of the Maximum Aerodynamic Efficiency of Wind Turbine Rotors With Winglets
,”
J. Phys. Conf. Ser.
,
75
, p.
012006
. 10.1088/1742-6596/75/1/012006
27.
Gupta
,
A.
, and
Amano
,
R. S.
,
2012
, “
CFD Analysis of Wind Turbine Blade With Winglets
,”
ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
.
28.
Ali
,
A.
,
2014
, “
Aerodynamic Optimisation of Small-Scale Horizontal Axis Wind Turbine Blades
,”
Master’s thesis
,
RMIT University
,
Melbourne, Australia
.
29.
Farhan
,
A.
,
Hassanpour
,
A.
,
Burns
,
A.
, and
Motlagh
,
Y. G.
,
2018
, “
Numerical Study of Effect of Winglet Planform and Airfoil on a Horizontal Axis Wind Turbine Performance
,”
Renewable. Energy
,
131
, pp.
1255
1273
. 10.1016/j.renene.2018.08.017
30.
Jonkman
,
J.
,
2010
, “
Definition of the Floating System for Phase IV of OC3, Scitech Connect Definition of the Floating System for Phase IV of Oc3
,” pp.
509
513
.
31.
Chen
,
D.
,
Gao
,
P.
,
Huang
,
S.
,
Fan
,
K.
,
Zhuang
,
N.
, and
Liao
,
Y.
,
2017
, “
Dynamic Response and Mooring Optimization of Spar-Type Substructure Under Combined Action of Wind, Wave, and Current
,”
J. Renewable Sustainable Energy
,
9
(
6
), p.
063307
. 10.1063/1.5017228
32.
Shen
,
Y. P.
,
Zhang
,
X. J.
,
Li
,
X. J.
, and
Zhu
,
G. H.
,
2017
, “
Summary of Load Calculation and Dynamics Analysis of Offshore Floating Wind Turbine
,”
J. Hunan Univ. Sci. Technol.
,
32
(
4
), pp.
23
31
. 10.13582/j.cnki.1672-9102.2017.04.004
33.
Shen
,
X.
,
Hu
,
P.
,
Chen
,
J.
, and
Zhu
,
X.
,
2018
, “
The Unsteady Aerodynamics of Floating Wind Turbine Under Platform Pitch Motion
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
8
), pp.
1019
1036
. 10.1177/0957650918766606
34.
Satwika
,
N. A.
,
Hantoro
,
R.
, and
Sarwono
,
2018
, “
Experimental and Numerical Analysis Design of a Lab-Scale on Horizontal Axis Wind Turbine
,”
ISITIA
,
Bali, Indonesia
,
Aug. 30–31
, pp.
99
104
.
35.
Mu
,
A. L.
,
Zhang
,
Y. L.
,
You
,
Y. P.
,
Wang
,
D.
, and
Tang
,
Y. K.
,
2015
, “
Study on the Effects of Mooring Parameters on the Stability of Floating Wind Turbine
,”
Proceedings of the CSEE
,
35
(
1
), pp.
151
158
.
36.
Tang
,
S. H.
, “
The Calculation of Aerodynamic Load and Finite Element Analysis to Blade of Floating Offshore Wind Turbine
,”
M.A.D. dissertation
,
Hunan University of Science Technology
,
Xiangtan, China
.
37.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory
,
CO
.
You do not currently have access to this content.