An accurate assessment of the amount solar radiation incident at specific locations is highly complex due to the dependence of available solar radiation on many meteorological and topographic parameters. Reunion Island, a small tropical French territory, intends to deploy solar energy technologies rapidly. In this context, the variability and intermittency of solar irradiance in different regions of the island is of immediate interest if the generated energy will be integrated in the existing energy network. This paper identifies different features of spatial and temporal variability of daily global horizontal irradiance (GHI) observed on Reunion Island. For this purpose, trends in the mean daily as well as seasonal variability of GHI were investigated. Furthermore, the intermittency and multifractal behaviors of the spatial daily GHI change were examined. Analyzing this daily variability is crucial to day-ahead forecasting of solar resource for better managing solar integration in the power grid, particularly in small island states with isolated power systems. Results revealed that the difference in cumulative GHI for two successive days ranges between −10 and 10 kW/m2/day while the highest and lowest variability of daily change occurs during summer and winter, respectively. The decorrelation distance, which gives a measure of the distance over which the variability at distinct geographic locations become independent of one another at a given timescale, was also calculated. It was found that the average decorrelation distance for day-to-day GHI change is about 22 km, a smaller value than that calculated by the previous studies using much sparser radiometric networks. The Hurst exponent, fractal co-dimension, and Lévy parameter, which describe solar radiation intermittency, were also evaluated for Reunion Island.

References

1.
Owusu
,
P. A.
, and
Asumadu-Sarkodie
,
S.
,
2016
, “
A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation
,”
Cogent Eng.
,
3
(
1
), p.
1167990
.
2.
Edenhofer
,
O.
,
Pichs-Madruga
,
R.
,
Sokona
,
Y.
,
Seyboth
,
K.
,
Kadner
,
S.
,
Zwickel
,
T.
,
Eickemeier
,
P.
,
Hansen
,
G.
,
Schlömer
,
S.
,
von Stechow
,
C.
, and
Matschoss
,
P.
, eds.,
2011
,
Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
3.
IEA,
2002
,
Renewable Energy: Into the Mainstream
,
International Energy Agency
,
Paris, France
.
4.
Boyle
,
G.
,
2012
,
Renewable Energy: Power for a Sustainable Future
, 3rd ed.,
Oxford University Press and Open University
,
Oxford, UK
.
5.
Garcia-Rodriguez
,
L.
,
2003
, “
Renewable Energy Applications in Desalination: State of the Art
,”
Sol. Energy
,
75
(
5
), pp.
381
393
.
6.
Hussain
,
M.
,
Rahman
,
L.
, and
Rahman
,
M. M.
,
1999
, “
Techniques to Obtain Improved Predictions of Global Radiation From Sunshine Duration
,”
Renewable Energy
,
18
, pp.
263
275
.
7.
Davy
,
R. J.
, and
Troccoli
,
A.
,
2012
, “
Interannual Variability of Solar Energy Generation in Australia
,”
Sol. Energy
,
86
(
12
), pp.
3554
3560
.
8.
Monforti
,
F.
,
Huld
,
T.
,
Bódis
,
K.
,
Vitali
,
L.
,
D'Isidoro
,
M.
, and
Lacal-Arántegui
,
R.
,
2014
, “
Assessing Complementarity of Wind and Solar Resources for Energy Production in Italy: A Monte Carlo Approach
,”
Renewable Energy
,
63
, pp.
576
586
.
9.
Soubdhan
,
T.
,
Emilion
,
R.
, and
Calif
,
R.
,
2009
, “
Classification of Daily Solar Radiation Distributions Using a Mixture of Dirichlet Distributions
,”
Sol. Energy
,
83
(
7
), pp.
1056
1063
.
10.
Harrouni
,
S.
,
Guessoum
,
A.
, and
Maafi
,
A.
,
2005
, “
Classification of Daily Solar Irradiation by Fractional Analysis of 10-Min-Means of Solar Global Irradiance
,”
Theor. Appl. Climatol
,
80
(
1
), pp.
27
36
.
11.
Maafi
,
A.
, and
Harrouni
,
S.
,
2003
, “
Preliminary Results of the Fractal Classification of Daily Solar Global Irradiances
,”
Sol. Energy
,
75
(
1
), pp.
53
61
.
12.
Lave
,
M.
, and
Kleissl
,
J.
,
2010
, “
Solar Variability of Four Sites Across the State of Colorado
,”
Renewable Energy
,
35
(
12
), pp.
2867
2873
.
13.
Hoff
,
T. E.
, and
Perez
,
R.
,
2012
, “
Modeling PV Fleet Output Variability
,”
Sol. Energy
,
86
(
8
), pp.
2177
2189
.
14.
David
,
M.
,
Andriamasomanana
,
F. H. R.
, and
Liandrat
,
O.
,
2013
, “
Spatial and Temporal Variability of PV Output in an Insular Grid: Case of Reunion Island
,”
Energy Procedia
,
57
, pp.
1275
1282
.
15.
Perez
,
R.
,
Kivalov
,
S.
,
Schlemmer
,
J.
,
Hemker
,
K.
, Jr.
, and
Hoff
,
T. E.
,
2012
, “
Short-Term Irradiance Variability: Preliminary Estimation of Station Pair Correlation as a Function of Distance
,”
Sol. Energy
,
86
(
8
), pp.
2170
2176
.
16.
Badosa
,
J.
,
Haeffelin
,
M.
,
H.
, and
Chepfer
,
J.
,
2013
, “
Scales of Spatial and Temporal Variation of Solar Irradiance on Reunion Tropical Island
,”
Sol. Energy
,
88
, pp.
42
56
.
17.
Kumar
,
M.
, and
Kumar
,
A.
,
2017
, “
Performance Assessment and Degradation Analysis of Solar Photovoltaic Technologies: A Review
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
554
587
.
18.
Herche
,
W.
,
2017
, “
Solar Energy Strategies in the U.S. Utility Market
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
590
595
.
19.
Jumaux
,
G.
,
Quetelard
,
H.
, and
Roy
,
D.
,
2011
,
Atlas Climatique de la Réunion
,
Direction interrégionale de la Réunion
,
Météo France, Paris, France
.
20.
Bhowmik
,
H.
, and
Amin
,
R.
,
2017
, “
Efficiency Improvement of Flat Plate Solar Collector Using Reflector
,”
Energy Rep.
,
3
, pp.
119
123
.
21.
Baldy
,
S.
,
Ancellet
,
G.
,
Bessafi
,
M.
,
Badr
,
A.
, and
Lan Sun Luk
,
J. D.
,
1996
, “
Field Observations of the Vertical Distribution of Tropospheric Ozone at the Island of Reunion (Southern Tropics)
,”
J. Geophys. Res.
,
101
(
D19
), pp.
23835
23849
.
22.
Morel
,
B.
,
Pohl
,
B.
,
Richard
,
Y.
,
Bois
,
B.
, and
Bessafi
,
M.
,
2014
, “
Regionalizing Rainfall at Very High Resolution Over La Réunion Island Using a Regional Climate Model
,”
Mon. Wea. Rev
,
142
(
8
), pp.
2665
2686
.
23.
Perez
,
M. J.
, and
Fthenakis
,
V. M.
,
2015
, “
On the Spatial Decorrelation of Stochastic Solar Resource Variability at Long Timescales
,”
Sol. Energy
,
117
, pp.
46
58
.
24.
Schertzer
,
D.
, and
Lovejoy
,
S.
,
1987
, “
Physical Modeling and Analysis of Rain and Clouds by Anisotropic Scaling Multiplicative Processes
,”
J. Geophys. Res.
,
92
(
D8
), pp.
9693
9714
.
25.
Davis
,
A.
,
Marshak
,
A.
,
Wiscombe
,
W.
, and
Cahalan
,
R.
,
1996
, “
Scale Invariance of Liquid Water Distributions in Marine Stratocumulus—Part I: Spectral Properties and Stationarity Issues
,”
J. Atmos. Sci.
,
53
(
11
), pp.
1538
1558
.
26.
Marshak
,
A.
,
Davis
,
A.
,
Wiscombe
,
W.
, and
Cahalan
,
R.
,
1997
, “
Scale Invariance of Liquid Water Distributions in Marine Stratocumulus—Part II: Multifractal Properties and Intermittency Issues
,”
J. Atmos. Sci.
,
54
(
11
), pp.
1423
1444
.
27.
Cho
,
J. Y. N.
,
Anderson
,
B. E.
,
Barrick
,
D. W.
, and
Thornhill
,
K. L.
,
2001
, “
Aircraft Observations of Boundary Layer Turbulence: Intermittency and the Cascade of Energy and Passive Scalar Variance
,”
J. Geophys. Res.
,
106
(
D23
), pp.
32469
32479
.
28.
Siebert
,
H.
,
Shaw
,
R. A.
, and
Warhaft
,
Z.
,
2009
, “
Statistics of Small-Scale Velocity Fluctuations and Internal Intermittency in Marine Stratocumulus Clouds
,”
J. Atmos. Sci.
,
67
(
1
), pp.
262
273
.
29.
Kolmogorov
,
A.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers
,” Doklady Akademiia Nauk SSSR,
30
(4), pp.
301
305
.
30.
Pressel
,
K. G.
, and
Collins
,
W. D.
,
2012
, “
First-Order Structure Function Analysis of Statistical Scale Invariance in the AIRS-Observed Water Vapor Field
,”
J. Clim.
,
25
(
16
), pp.
5538
5555
.
31.
Pressel
,
K. G.
,
Collins
,
W. D.
, and
Desai
,
A. R.
,
2014
, “
Spatial Dependence of Water Vapor Variability Inferred From Observations From a Very Tall Tower
,”
J. Geophys. Res., Atmos.
,
119
(
16
), pp.
9822
9837
.
32.
Taupin
,
F. G.
,
Bessafi
,
M.
,
Baldy
,
S.
, and
Bremaud
,
P. J.
,
1999
, “
Tropospheric Ozone Above the Southwestern Indian Ocean is Strongly Linked to Dynamical Conditions Prevailing in the Tropics
,”
J. Geophys. Res
,
104
(
D7
), pp.
8057
8066
.
33.
Lesouëf
,
D.
,
Gheusi
,
F.
,
Delmas
,
R.
, and
Escobar
,
J.
,
2011
, “
Numerical Simulations of Local Circulations and Pollution Transport Over Reunion Island
,”
Ann. Geophys.
,
29
(
1
), pp.
53
69
.
34.
Lewis
,
G. M.
, and
Austin
,
P. H.
,
2004
, “
Spatial Statistics of Marine Boundary Layer Clouds
,”
J. Geophys. Res.
,
109
(
D4
), pp.
1
16
.
35.
Nunez
,
M.
,
Fienberg
,
K.
, and
Kuchinke
,
C.
,
2005
, “
Temporal Structure of the Solar Radiation Field in Cloudy Conditions: Are Retrievals of Hourly Averages From Space Possible?
,”
J. Appl. Meteor.
,
44
(
1
), pp.
167
178
.
36.
Carvalho
,
L. M. V.
,
Lavallée
,
D.
, and
Jones
,
C.
,
2002
, “
Multifractal Properties of Evolving Convective Systems Over Tropical South America
,”
Geophys. Res. Lett.
,
29
(
15
), pp.
1
4
.
You do not currently have access to this content.