Compared to solar photovoltaics, concentrated solar power (CSP) can store excessive solar thermal energy, extend the power generation, and levelize the mismatch between the demand and supply. Thermal energy storage (TES) system filled with phase change material (PCM) is a key to make CSP competitive, and it is also a promising indirect energy storage technique. It is of great interests to the solar thermal engineering community to apply the latent heat thermal energy storage (LHTES) system for large-scale CSP application, because PCMs can store more energy due to the latent heat during the melting/freezing process. Therefore, a comprehensive parametric analysis of LHTES system is necessary in order to identify the most sensitive ranges of various parameters to design the LHTES system with better systematic performances. In this study, unlike the existing parametric study based on dimensional parameters, we aimed to provide a more general analysis using dimensionless parameters; therefore, an 11-dimensionless-parameter space of LHTES system was developed, by considering the technical constraints (material properties and operation parameters), without economic constraints. The parametric study and sensitivity analysis were then performed based on a 1D enthalpy-based transient model, and the energy storage efficiency was used as the objective function to minimize the number of variables in the parameter space. It was found that Stanton number (St), dimensionless PCM radius (r/D), and void fraction (ε) are the three most important dimensionless parameters. It is expected that the discovery of this study can bring more discussions in the solar thermal engineering community about the implementation of LHTES system in CSP plant, to further explore the significances of these three dimensionless parameters to the operation of the LHTES system.

References

1.
Py
,
X.
,
Azoumah
,
Y.
, and
Olives
,
R.
,
2013
, “
Concentrated Solar Power: Current Technologies, Major Innovative Issues and Applicability to West African Countries
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
306
315
.
2.
Pacio
,
J.
, and
Wetzel
,
T.
,
2013
, “
Assessment of Liquid Metal Technology Status and Research Paths for Their Use as Efficient Heat Transfer Fluids in Solar Central Receiver Systems
,”
Sol. Energy
,
93
, pp.
11
22
.
3.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications
,”
Appl. Energy
,
104
, pp.
538
553
.
4.
Vignarooban
,
K.
,
Xu
,
X.
,
Arvay
,
A.
,
Hsu
,
K.
, and
Kannan
,
A. M.
,
2015
, “
Heat Transfer Fluids for Concentrating Solar Power Systems–A Review
,”
Appl. Energy
,
146
, pp.
383
396
.
5.
Cooper
,
C.
, and
Sovacool
,
B. K.
,
2013
, “
Miracle or Mirage? The Promise and Peril of Desert Energy Part 1
,”
Renewable Energy
,
50
, pp.
628
636
.
6.
Sun
,
J.
,
Liu
,
Q.
, and
Hong
,
H.
,
2015
, “
Numerical Study of Parabolic-Trough Direct Steam Generation Loop in Recirculation Mode: Characteristics, Performance and General Operation Strategy
,”
Energy Convers. Manage.
,
96
, pp.
287
302
.
7.
Qureshi
,
Z. A.
,
Ali
,
H. M.
, and
Khushnood
,
S.
,
2018
, “
Recent Advances on Thermal Conductivity Enhancement of Phase Change Materials for Energy Storage System: A Review
,”
Int. J. Heat Mass Transfer
,
127
, pp.
838
856
.
8.
Nazir
,
H.
,
Batool
,
M.
,
Osorio
,
F. J. B.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
, and
Kannan
,
A. M.
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transfer
,
129
, pp.
491
523
.
9.
Laing
,
D.
,
Bauer
,
T.
,
Lehmann
,
D.
, and
Bahl
,
C.
,
2010
, “
Development of a Thermal Energy Storage System for Parabolic Trough Power Plants With Direct Steam Generation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021011
.
10.
Py
,
X.
,
Calvet
,
N.
,
Olives
,
R.
,
Meffre
,
A.
,
Echegut
,
P.
,
Bessada
,
C.
,
Veron
,
E.
, and
Ory
,
S.
,
2011
, “
Recycled Material for Sensible Heat Based Thermal Energy Storage to Be Used in Concentrated Solar Thermal Power Plants
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031008
.
11.
Xu
,
B.
,
Li
,
P.
,
Chan
,
C.
, and
Tumilowicz
,
E.
,
2015
, “
General Volume Sizing Strategy for Thermal Storage System Using Phase Change Material for Concentrated Solar Thermal Power Plant
,”
Appl. Energy
,
140
, pp.
256
268
.
12.
Hoshi
,
A.
,
Mills
,
D. R.
,
Bittar
,
A.
, and
Saitoh
,
T. S.
,
2005
, “
Screening of High Melting Point Phase Change Materials (PCM) in Solar Thermal Concentrating Technology Based on CLFR
,”
Sol. Energy
,
79
(
3
), pp.
332
339
.
13.
Xu
,
B.
,
Li
,
P.
, and
Chan
,
C.
,
2015
, “
Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: A Review to Recent Developments
,”
Appl. Energy
,
160
, pp.
286
307
.
14.
Shabgard
,
H.
,
Faghri
,
A.
,
Bergman
,
T. L.
, and
Andraka
,
C. E.
,
2014
, “
Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021025
.
15.
Shinde
,
A.
,
Arpit
,
S.
,
Pramod
,
K. M.
,
Rao
,
P. V. C.
, and
Saha
,
S. K.
,
2017
, “
Heat Transfer Characterization and Optimization of Latent Heat Thermal Storage System Using Fins for Medium Temperature Solar Applications
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031003
.
16.
Han
,
B.
,
Zhang
,
K.
, and
Yu
,
X.
,
2013
, “
Enhance the Thermal Storage of Cement-Based Composites With Phase Change Materials and Carbon Nanotubes
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
024505
.
17.
Alam
,
T. E.
,
Dhau
,
J. S.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E.
,
2015
, “
Macroencapsulation and Characterization of Phase Change Materials for Latent Heat Thermal Energy Storage Systems
,”
Appl. Energy
,
154
, pp.
92
101
.
18.
Jacob
,
R.
, and
Bruno
,
F.
,
2015
, “
Review on Shell Materials Used in the Encapsulation of Phase Change Materials for High Temperature Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
79
87
.
19.
Nithyanandam
,
K.
,
Pitchumani
,
R.
, and
Mathur
,
A.
, “
Analysis of a Latent Thermocline Energy Storage System for Concentrating Solar Power Plants
,”
ASME
Paper No. ES2012-91389.
20.
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
1997
, “
Thermodynamic Optimization of the Thermal Process in Energy Storage Using Multiple Phase Change Materials
,”
Appl. Therm. Eng.
,
17
(
11
), pp.
1067
1083
.
21.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Appl. Energy
,
92
, pp.
65
75
.
22.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2011
, “
Analysis and Optimization of a Latent Thermal Energy Storage System With Embedded Heat Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4596
4610
.
23.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Cost and Performance Analysis of Concentrating Solar Power Systems With Integrated Latent Thermal Energy Storage
,”
Energy
,
64
, pp.
793
810
.
24.
Geissbühler
,
L.
,
Kolman
,
M.
,
Zanganeh
,
G.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2016
, “
Analysis of Industrial-Scale High-Temperature Combined Sensible/Latent Thermal Energy Storage
,”
Appl. Therm. Eng.
,
101
, pp.
657
668
.
25.
Mehos
,
M.
,
Jorgenson
,
J.
,
Denholm
,
P.
, and
Turchi
,
C.
,
2015
, “
An Assessment of the Net Value of CSP Systems Integrated With Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
2060
2071
.
26.
Tumilowicz
,
E.
,
Chan
,
C. L.
,
Li
,
P.
, and
Xu
,
B.
,
2014
, “
An Enthalpy Formulation for Thermocline With Encapsulated PCM Thermal Storage and Benchmark Solution Using the Method of Characteristics
,”
Int. J. Heat Mass Transfer
,
79
, pp.
362
377
.
27.
Xu
,
B.
,
Zhao
,
Y.
,
Chirino
,
H.
, and
Li
,
P.
,
2017
, “
Parametric Study of Cascade Latent Heat Thermal Storage System for Concentrating Solar Power Plants
,”
ASME
Paper No. ES2017-3096.
28.
Chirino
,
H.
,
Xu
,
B.
, and
Xu
,
X.
,
2018
, “
Parametric Study of Cascade Latent Heat Thermal Energy Storage (CLHTES) System in Concentrated Solar Power (CSP) Plants
,”
J. Energy Inst.
, (in Press).
29.
Chirino
,
H.
,
Xu
,
B.
,
Xu
,
X.
, and
Guo
,
P.
,
2018
, “
Generalized Diagrams of Energy Storage Efficiency for Latent Heat Thermal Storage System in Concentrated Solar Power Plant
,”
Appl. Therm. Eng.
,
129
, pp.
1595
1603
.
30.
Yunus, A. C., and Cimbala, J. M., 2006,
Fluid Mechanics Fundamentals and Applications
, 3rd ed., McGraw Hill, New York.
31.
SunShot, Energy Efficiency and Renewable Energy
, U.S. Department of Energy,
2012
, “SunShot Vision Study: February 2012,” National Renewable Energy Laboratory, Golden, CO, Report No.
DOE/GO-102012-3037
.https://www.energy.gov/sites/prod/files/2014/01/f7/47927.pdf
32.
Li
,
P.
,
Xu
,
B.
,
Han
,
J.
, and
Yang
,
Y.
,
2014
, “
Verification of a Model of Thermal Storage Incorporated With an Extended Lumped Capacitance Method for Various Solid–Fluid Structural Combinations
,”
Sol. Energy
,
105
, pp.
71
81
.
33.
Raade
,
J. W.
, and
Padowitz
,
D.
,
2011
, “
Development of Molten Salt Heat Transfer Fluid With Low Melting Point and High Thermal Stability
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031013
.
34.
Bai
,
Y.
,
Li
,
J.
,
Zhou
,
J.
, and
Li
,
Q.
,
2008
, “
Sensitivity Analysis of the Dimensionless Parameters in Scaling a Polymer Flooding Reservoir
,”
Transp. Porous Media
,
73
(
1
), pp.
21
37
.
35.
Bai
,
Y.
,
Li
,
J.
, and
Zhou
,
J.
,
2005
, “
Sensitivity Analysis of Dimensionless Parameters for Physical Simulation of Water-Flooding Reservoir
,”
Sci. China Ser. E Eng. Mater. Sci.
,
48
(
4
), pp.
441
453
.
36.
Xu
,
B.
,
Li
,
P.
, and
Chan
,
C. L.
,
2015
, “
Energy Storage Start-Up Strategies for Concentrated Solar Power Plants With a Dual-Media Thermal Storage System
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051002
.
37.
Xu
,
B.
,
Li
,
P. W.
, and
Chan
,
C. L.
,
2012
, “
Extending the Validity of Lumped Capacitance Method for Large Biot Number in Thermal Storage Application
,”
Sol. Energy
,
86
(
6
), pp.
1709
1724
.
You do not currently have access to this content.