The optical performance of solar central tower (CT) systems on hillsides of mountain areas is investigated based on the biomimetic spiral heliostat field distribution algorithm. The optical efficiencies and the field characteristics of different hillside solar field configurations are examined. The effect of various geometric parameters such as hillside tilt angle and the location of the receiver on the optical efficiency of the field are investigated and documented. The study is based on generating a 25 MWth power plant at the location of Sierra Sun Tower in California, USA, using Planta Solar 10 (PS10) heliostats' parameters. This study is performed numerically using a specially developed code using matlab software. The biomimetic spiral distribution pattern and the particle swarm optimization (PSO) method were used to obtain optimum solar fields. The spiral distribution shape factors were optimized for pursuing maximum annual weighted field efficiency. It is found that the annual optical weighted field efficiency for hillside solar fields is always lower than that for a flat field for same receiver height. On the other hand, the field land area for small hillside-slopes is smaller than that of a flat field area. It is found that there is an optimum field tilt angle where the land area is minimum. The minimum field area for the system studied in this paper was associated with (15 deg) field tilt angle. Furthermore, it was found that as the tower height increases the annual optical field weighted efficiency increases until it reaches a peak value. It was also found that, the closer the tower to the beginning of the heliostat field, the higher the field efficiency with less number of heliostats and less land area.

References

1.
Gauché
,
P.
,
Rudman
,
J.
,
Mabaso
,
M.
,
Landman
,
W. A.
,
von Backström
,
T. W.
, and
Brent
,
A. C.
,
2017
, “
System Value and Progress of CSP: Review
,”
Sol. Energy
,
152
, pp. 106–139.
2.
Pidaparthi
,
A.
,
2017
, “
Heliostat Cost Reduction for Power Tower Plants
,” M. S. thesis, Stellenbosch University, Stellenbosch, South Africa.
3.
Kotzé
,
J. P.
,
von Backström
,
T. W.
, and
Erens
,
P. J.
,
2015
, “
High Temperature Thermal Energy Storage Utilizing Metallic Phase Change Materials and Metallic Heat Transfer Fluids
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
035001
.
4.
Noone
,
C. J.
,
Torrilhon
,
M.
, and
Mitsos
,
A.
,
2012
, “
Heliostat Field Optimization: A New Computationally Efficient Model and Biomimetic Layout
,”
Sol. Energy
,
86
(
2
), pp.
792
803
.
5.
Mutuberria
,
A.
,
Pascual
,
J.
,
Guisado
,
M. V.
, and
Mallor
,
F.
,
2015
, “
Comparison of Heliostat Field Layout Design Methodologies and Impact on Power Plant Efficiency
,”
Energy Procedia
,
69
, pp.
1360
1370
.
6.
Lipps
,
F. W.
, and
Vant-Hull
,
L. L.
,
1978
, “
A Cell Wise Method for the Optimization of Large Central Receiver Systems
,”
Sol. Energy
,
20
(
6
), pp.
505
516
.
7.
Slocum
,
A. H.
,
Codd
,
D. S.
,
Buongiorno
,
J.
,
Forsberg
,
C.
,
McKrell
,
T.
,
Nave
,
J.-C.
,
Papanicolas
,
C. N.
,
Ghobeity
,
A.
,
Noone
,
C. J.
,
Passerini
,
S.
,
Rojas
,
F.
, and
Mitsos
,
A.
,
2011
, “
Concentrated Solar Power on Demand
,”
Sol. Energy
,
85
(
7
), pp.
1519
1529
.
8.
Noone
,
C. J.
,
Ghobeity
,
A.
,
Slocum
,
A. H.
,
Tzamtzis
,
G.
, and
Mitsos
,
A.
,
2011
, “
Site Selection for Hillside Central Receiver Solar Thermal Plants
,”
Sol. Energy
,
85
(
5
), pp.
839
848
.
9.
Piroozmand
,
P.
, and
Boroushaki
,
M.
,
2016
, “
A Computational Method for Optimal Design of the Multi-Tower Heliostat Field Considering Heliostats Interactions
,”
Energy
,
106
, pp.
240
252
.
10.
Mustafa
,
M. A.
,
Abdelhady
,
S.
, and
Elweteedy
,
A. A.
,
2012
, “
Analytical Study of an Innovated Solar Power Tower (PS10) in Aswan
,”
Int. J. Energy Eng.
,
2
(
6
), pp.
273
278
.
11.
Pitz-Paal
,
R.
,
Botero
,
N. B.
, and
Steinfeld
,
A.
,
2011
, “
Heliostat Field Layout Optimization for High-Temperature Solar Thermochemical Processing
,”
Sol. Energy
,
85
(
2
), pp.
334
343
.
12.
Sukhatme
,
S. P.
,
1996
,
Solar Energy: Principles of Thermal Collection and Storage
,
Tata McGraw-Hill Education
,
New Delhi
.
13.
Günther
,
M.
,
Janotte
,
N.
,
Mezrhab
,
A.
,
Pottler
,
K.
,
Schillings
,
C.
,
Wilbert
,
S.
, and
Wolferstätter
,
F.
, 2011, “
Advanced CSP Teaching Materials Chapter 2 Solar Radiation
,”.
14.
Cruz
,
N. C.
,
Redondo
,
J. L.
,
Berenguel
,
M.
,
Álvarez
,
J. D.
,
Becerra-Teron
,
A.
, and
Ortigosa
,
P. M.
,
2016
, “
High Performance Computing for the Heliostat Field Layout Evaluation
,”
J. Supercomputing.
,
73
(
1
), pp.
1
18
.
15.
Besarati
,
S. M.
, and
Yogi Goswami
,
D.
,
2014
, “
A Computationally Efficient Method for the Design of the Heliostat Field for Solar Power Tower Plant
,”
Renewable Energy.
,
69
, pp.
226
232
.
16.
Wei
,
X.
,
Lu
,
Z.
,
Yu
,
W.
, and
Wang
,
Z.
,
2010
, “
A New Code for the Design and Analysis of the Heliostat Field Layout for Power Tower System
,”
Sol. Energy
,
84
(
4
), pp.
685
690
.
17.
Ewert
,
M.
, and
Navarro Fuentes
,
O.
, “
Modelling and Simulation of a Solar Tower Power Plant
,” Mathcces, Aachen, Germany, accessed Oct. 23, 2017, http://www.mathcces.rwth-aachen.de/_media/5people/frank/solartower.pdf
18.
Eddhibi
,
F.
,
Ben Amara
,
M.
,
Balghouthi
,
M.
, and
Guizani
,
A.
,
2015
, “
Optical Study of Solar Tower Power Plants
,”
J. Phys.: Conf. Ser.
,
596
, p.
012018
.
19.
Sánchez-González
,
A.
, and
Santana
,
D.
,
2015
, “
Solar Flux Distribution on Central Receivers: A Projection Method From Analytic Function
,”
Renewable Energy.
,
74
, pp.
576
587
.
20.
Schwarzbözl
,
P.
,
Schmitz
,
M.
, and
Pitz-Paal
,
R.
,
2009
, “
Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields
,”
SolarPACES Conference
, Berlin, Germany, pp.
15
18
.
21.
Collado
,
F. J.
,
2010
, “
One-Point Fitting of the Flux Density Produced by a Heliostat
,”
Sol. Energy.
,
84
(
4
), pp.
673
684
.
22.
Besarati
,
S. M.
,
Yogi Goswami
,
D.
, and
Stefanakos
,
E. K.
,
2014
, “
Optimal Heliostat Aiming Strategy for Uniform Distribution of Heat Flux on the Receiver of a Solar Power Tower Plant
,”
Energy Convers. Manage.
,
84
, pp.
234
243
.
23.
Anton
,
H.
,
Bivens
,
I.
, and
Davis
,
S.
,
2009
,
Calculus Early: Trancendentals
, 9th ed.,
Laurie Rosatone
,
Jefferson City, MS
.
24.
Goswami
,
D. Y.
,
2015
,
Principles of Solar Engineering
, 3rd ed.,
Taylor & Francis Group
.
New York
.
25.
Ramos
,
A.
, and
Ramos
,
F.
,
2014
, “
Heliostat Blocking and Shadowing Efficiency in the Video-Game Era
,”
arXiv:1402.1690v1
.https://arxiv.org/abs/1402.1690
26.
Holz
,
S.
,
2005
, “
Polygon Clipper. MathWorks File Exchange
,” Matlab Central File Exchange, MathWorks Inc., Natick, MA, accessed Aug. 16, 2018, https://www.mathworks.com/matlabcentral/fileexchange/8818-polygon-clipper
27.
Zhou
,
Y.
, and
Zhao
,
Y.
,
2014
, “
Heliostat Field Layout Design for Solar Tower Power Plant Based on GPU
,”
19th World Congress. The International Federation of Automatic Control
, Cape Town, South Africa, pp.
24
29
.
28.
Garg
,
H. P.
,
1987
,
Advances in Solar Energy Technology
, Vol. 2, D. Reidel Publishing Company, Dordrecht,
The Netherlands
.
29.
Kiwan
,
S.
, and
Khammash
,
A. L.
,
2018
, “
Investigations Into the Spiral Distribution of the Heliostat Field in Solar Central Tower System
,”
Sol. Energy.
,
164
, pp.
25
37
.
30.
Marini
,
F.
, and
Walczak
,
B.
,
2015
, “
Particle Swarm Optimization (PSO). A Tutorial
,”
Chemom. Intell. Lab. Syst.
,
149
, pp.
153
165
.
31.
Dash
,
J.
,
Dam
,
B.
, and
Swain
,
R.
,
2017
, “
Optimal Design of Linear Phase Multi-Band Stop Filters Using Improved Cuckoo Search Particle Swarm Optimization
,”
Appl. Soft Comput.
,
52
, pp.
435
445
.
You do not currently have access to this content.