The ribbed three-dimensional solar air heater (SAH) model is numerically investigated to estimate flow and heat transfer through it. The numerical analysis is based on finite volume approach, and the set of flow governing equations has been solved to determine the heat transfer and flow field through the SAH. For detailed analysis, rib chamfer height ratio (e′/e) and rib aspect ratio (e/w), two innovative parameters, have been created and considered along with the commonly used roughness parameter, i.e., relative roughness height, e/D. The parameters e′/e, e/w, and e/D are varied from 0.0 to 1, 0.1 to 1.5, and 0.18 to 0.043, respectively, but the value of P/e is kept constant for the entire investigation at 12. A good match is seen in Nusselt number (Nu) and friction factor (f) by comparing the predicted results with the experimental ones. With the variation of roughness parameters, distinguishable change in Nu and f is obtained. The highest value of thermohydraulic performance parameter (TPP) observed is 2.08 for P/e, e′/e, e/w, and e/D values of 12, 0.75, 1.5, and 0.043, respectively, at Re of 17,100. The developed generalized equation for Nu and f has shown acceptable percentage deviation under the studied range of parameters.

References

1.
Mghazli
,
S.
,
Ouhammou
,
M.
,
Hidar
,
N.
,
Lahnine
,
L.
,
Idliman
,
A.
, and
Mohrouz
,
M.
,
2017
, “
Drying Characteristics and Kinetics Solar Drying of Moroccan Rosemary Leaves
,”
Renewable Energy
,
108
, pp.
303
310
.
2.
Buyukakin
,
M. K.
,
Oztuna
,
S.
, and
Demir
,
H.
,
2017
, “
Design and Thermodynamic Analysis of a Solar-Assisted Cini Ceramic Drying System
,”
Renewable Energy
,
111
, pp.
147
156
.
3.
Rabha
,
D. K.
,
Muthukumar
,
P.
, and
Somayaji
,
C.
,
2017
, “
Energy and Exergy Analyses of the Solar Drying Processes of Ghost Chilli Pepper and Giner
,”
Renewable Energy
,
105
, pp.
764
773
.
4.
Ge
,
T. S.
,
Wang
,
R. Z.
,
Xu
,
Z. Y.
,
Pan
,
Q. W.
,
Du
,
S.
,
Chen
,
X. M.
,
Ma
,
T.
,
Wu
,
X. N.
,
Sun
,
X. L.
, and
Chen
,
J. F.
, “
Solar Heating and Cooling: Present and Future Development
,”
Renewable Energy
,
126
, pp. 1126–1140.
5.
Kicsiny
,
R.
,
2017
, “
Transfer Functions of Solar Heating Systems With Pipes for Dynamic Analysis and Control Design
,”
Sol. Energy
,
150
, pp.
596
607
.
6.
Kumaresan
,
G.
,
Vigneswaran
,
V. S.
,
Esakkimuthu
,
S.
, and
Velraj
,
R.
,
2017
, “
Performance Assessment of Solar Domestic Cooking Unit Integrated With Thermal Energy Storage System
,”
J. Energy Storage
,
6
, pp.
70
79
.
7.
Mussard
,
M.
,
Gueno
,
A.
, and
Nydal
,
O. J.
,
2013
, “
Experimental Study of Solar Cooking Using Heat Storage in Comparison With Direct Heating
,”
Sol. Energy
,
98
, pp.
375
383
.
8.
Mahavar
,
S.
,
Rajawat
,
P.
,
Punia
,
R. C.
,
Senger
,
N.
, and
Dashora
,
P.
,
2015
, “
Evaluating the Optimum Load Range for Box-Type Solar Cookers
,”
Renewable Energy
,
74
, pp.
187
194
.
9.
Harmim
,
A.
,
Merzouk
,
M.
,
Boukar
,
M.
, and
Amar
,
M.
,
2013
, “
Design and Experimental Testing of an Innovative Building-Integrated Box Type Solar Cooker
,”
Sol. Energy
,
98
, pp.
422
433
.
10.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
95
.
11.
Aboghrara
,
A. M.
,
Baharudin
,
B. T. H. T.
,
Alghoul
,
M. A.
,
Adam
,
N. M.
,
Hairuddin
,
A. A.
, and
Hasan
,
H. A.
,
2017
, “
Performance Analysis of Solar Air Heater With Jet Impingement on Corrugated Absorber Plate
,”
Case Stud. Therm. Eng.
,
10
, pp.
111
120
.
12.
Kumar
,
R.
, and
Chand
,
P.
,
2017
, “
Performance Enhancement of Solar Air Heater Using Herringbone Corrugated Fins
,”
Energy
,
127
, pp.
271
279
.
13.
Abdullah
,
A. S.
,
El-Samadony
,
Y. A. F.
, and
Omara
,
Z. A.
,
2017
, “
Performance Evaluation of Plastic Solar Air Heater With Different Cross Sectional Configuration
,”
Appl. Therm. Eng.
,
121
, pp.
218
223
.
14.
Gilani
,
S. E.
,
Al-Kayiem
,
H. H.
,
Woldemicheal
,
D. E.
, and
Gilani
,
S. I.
,
2017
, “
Performance Enhancement of Free Convective Solar Air Heater by Pin Protrusions on the Absorber
,”
Sol. Energy
,
151
, pp.
173
185
.
15.
Varun, Saini
,
R. P.
, and
Singal
,
S. K.
,
2007
, “
A Review on Roughness Geometry Used in Solar Air Heaters
,”
Sol. Energy
,
81
(
11
), pp.
1340
1350
.
16.
Yadav
,
Y. S.
, and
Bhagoria
,
J. L.
,
2013
, “
Heat Transfer and Fluid Flow Analysis of Solar Air Heater: A Review of CFD Approach
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
60
79
.
17.
Singh
,
S.
, and
Dhiman
,
P.
,
2016
, “
Thermal Performance of Double Pass Packed Bed Solar Air Heaters–A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1010
1031
.
18.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
A Review of CFD Methodology Used in Literature for Predicting Thermo-Hydraulic Performance of a Roughened Solar Air Heater
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
550
605
.
19.
Kumar
,
R.
, and
Varun
,
A. K.
,
2016
, “
Thermal and Fluid Dynamic Characteristics of Flow Through Triangular Cross-Sectional Duct: A Review
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
123
140
.
20.
Sethi
,
M.
, and
Thakur
,
N. S.
,
2012
, “
Correlations for Solar Air Heater Duct With Dimpled Shape Roughness Elements on Absorber Plate
,”
Sol. Energy
,
86
(
9
), pp.
2852
2861
.
21.
Yadav
,
S.
,
Kaushal
,
M.
, and
Varun
,
S.
,
2013
, “
Nusselt Number and Friction Factor Correlations for Solar Air Heater Duct Having Protrusions as Roughness Elements on Absorber Plate
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
34
41
.
22.
Singh
,
A. P.
, and
Varun
,
S.
,
2014
, “
Effect of Artificial Roughness on Heat Transfer and Friction Characteristics Having Multiple Arc Shaped Roughness Element on the Absorber Plate
,”
Sol. Energy
,
105
, pp.
479
493
.
23.
Bharadwaj
,
G.
,
Kaushal
,
M.
, and
Goel
,
V.
,
2013
, “
Heat Transfer and Friction Characteristics of an Equilateral Triangular Solar Air Heater Duct Using Inclined Continuous Ribs as Roughness Element on the Absorber Plate
,”
Int. J. Sustainable Energy
,
32
(
6
), pp.
515
530
.
24.
Singh
,
A. P.
, and
Varun
,
S.
,
2014
, “
Heat Transfer and Friction Factor Correlations for Multiple Arc Shape Roughness Elements on the Absorber Plate Used in Solar Air Heaters
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
117
126
.
25.
Yadav
,
S.
,
Kaushal
,
M.
, and
Varun
,
S.
,
2014
, “
Exergetic Performance Evaluation of Solar Air Heater Having Arc Shape Oriented Protrusions as Roughness Element
,”
Sol. Energy
,
105
, pp.
181
189
.
26.
Kumar
,
R.
,
Geol
,
V.
, and
Kumar
,
A.
,
2017
, “
A Parametric Study of the 2D Model of Solar Air Heater With Elliptical Rib Roughness Using CFD
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
959
964
.
27.
Sharma, A., Bharadwaj, G., and
Varun
,
2017
, “
Heat Transfer and Friction Factor Correlation Development for Double-Pass Solar Air Heater Having V-Shaped Ribs as Roughness Elements
,”
Exp. Heat Transfer
,
30
(
1
), pp.
77
90
.
28.
Kumar, R., Varun, and Kumar, A.,
2017
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
.
29.
Patil
,
A. K.
,
Saini
,
J. S.
, and
Kumar
,
K.
,
2015
, “
Experimental Investigation of Enhanced Heat Transfer and Pressure Drop in a Solar Air Heater Duct With Discretized Broken V-Rib Roughness
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021013
.
30.
Pandey
,
N. K.
, and
Bajpai
,
V. K.
,
2016
, “
Experimental Investigation of Heat Transfer and Friction Characteristics of Arc-Shaped Roughness Elements Having Central Gaps on the Absorber Plate of Solar Air Heater
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
041005
.
31.
Bharadwaj
,
G.
,
Varun
,
R. K.
, and
Sharma
,
A.
,
2017
, “
Heat Transfer Augmentation and Flow Characteristics in Ribbed Triangular Duct Solar Air Heater: An Experimental Analysis
,”
Int. J. Green Energy
,
14
(
7
), pp.
587
598
.
32.
Kumar, R., Kumar, A., and Varun,
2017
, “
Computational Fluid Dynamics Based Study for Analyzing Heat Transfer and Friction Factor in Semi-Circular Rib-Roughened Equilateral Triangular Duct
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
4
), pp.
941
957
.
33.
Karwa
,
R.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
1999
, “
Heat Transfer Coefficient and Friction Factor Correlations for the Transitional Flow Regime in Rib-Roughened Rectangular Ducts
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1597
1615
.
34.
Karwa
,
R.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2001
, “
Thermo-Hydraulic Performance of Solar Air Heaters Having Integral Chamfered Rib Roughness on Absorber Plates
,”
Energy
,
26
(
2
), pp.
161
176
.
35.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
,
2002
, “
Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate
,”
Renewable Energy
,
25
(
3
), pp.
341
369
.
36.
Layek
,
A.
,
Saini
,
J. S.
, and
Solanki
,
J. S. S. C.
,
2009
, “
Effect of Chamfering on Heat Transfer and Friction Characteristics of Solar Air Heater Having Absorber Plate Roughened With Compound Turbulators
,”
Renewable Energy
,
34
(
5
), pp.
1292
1298
.
37.
Layek
,
A.
,
2010
, “
Optimal Thermo-Hydraulic Performance of Solar Air Heater Having Chamfered Rib-Groove Roughness on Absorber Plate
,”
Int. J. Energy Environ.
,
1
(
4
), pp.
683
696
.https://www.ijee.ieefoundation.org/vol1/issue4/IJEE_11_v1n4.pdf
38.
Ali
,
M. S.
,
Tariq
,
A.
, and
Gandhi
,
B. K.
,
2013
, “
Flow and Heat Transfer Investigation Behind Trapezoidal Rib Using PIV and LCT Measurements
,”
Exp. Fluids
,
54
(
5
), p.
1520
.
39.
Karwa
,
R.
,
Maheshwari
,
B. K.
, and
Karwa
,
N.
,
2008
, “
Flow Visualization and Local Mass Transfer Studies for Turbulent Flow in a Wind Tunnel With Chamfered Ribs
,”
J. Visualization
,
11
(
3
), pp.
205
212
.
40.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renewable Energy
,
31
(
3
), pp.
317
331
.
41.
Gawande
,
V. B.
,
Dhoble
,
A. S.
,
Zodpe
,
D. B.
, and
Chamoli
,
S.
,
2016
, “
Experimental and CFD-Based Thermal Performance Prediction of Solar Air Heater Provided With Chamfered Square Rib as Artificial Roughness
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
2
), pp.
643
663
.
42.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1988
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer-Verlag
,
Germany
.
43.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Seetharamu
,
K. N.
, and
Seetharam
,
T. R.
,
2013
,
Fundamentals of Heat and Mass Transfer
, 1st ed.,
Wiley
, Hoboken, NJ.
44.
ANSYS
, 2003–2004, “Documentation (Theory Guide), ANSYS FLUENT 12.0,”
ANSYS
, Canonsburg, PA.
45.
Salim, S. M., and Cheah, S. C., 2009, “
Wall y+ Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
Lect. Notes Eng. Comput. Sci.
,
2175
(1), pp. 2165–2170.
46.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
47.
Luo
,
D. D.
,
Leung
,
C. W.
, and
Chan
,
T. L.
,
2004
, “
Optimum Rib Size to Enhance Forced Convection in a Horizontal Triangular Duct With Ribbed Internal Surfaces
,”
Heat Mass Transfer
,
40
(
11
), pp.
893
900
.
48.
Alam
,
T.
, and
Kim
,
M. H.
,
2016
, “
Numerical Study on Thermal Hydraulic Performance Improvement in Solar Air Heater Duct With Semi Elliptical Shaped Obstacles
,”
Energy
,
112
, pp.
588
–5
98
.
49.
Singh
,
S.
,
Singh
,
B.
,
Hans
,
V. S.
, and
Gill
,
R. S.
,
2015
, “
CFD (Computational Fluid Dynamics) Investigation of Nusselt Number and Friction Factor of Solar Air Heater Duct Roughened With Non-Uniform Cross-Section Transverse Rib
,”
Energy
,
84
, pp.
509
517
.
50.
Parsad
,
B. N.
, and
Saini
,
J. S.
,
1991
, “
Optimal Thermohydraulic Performance of Artificially Roughened Solar Air Heaters
,”
Sol. Energy
,
47
(
2
), pp.
91
6
.
51.
Webb
,
R. L.
, and
Eckert
,
E. G. R.
,
1972
, “
Applications of Roughness Surface to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
52.
Kumar
,
R.
,
Kumar
,
A.
, and
Goel
,
V.
,
2017
, “
A Parametric Analysis of Rectangular Rib Roughened Triangular Duct Solar Air Heater Using Computational Fluid Dynamics
,”
Sol. Energy
,
157
, pp.
1095
1107
.
53.
Kumar
,
R.
,
Goel
,
V.
,
Kumar
,
A.
,
Khurana
,
S.
,
Singh
,
P.
, and
Bopche
,
S. B.
,
2017
, “
Numerical Investigation of Heat Transfer and Friction Factor in Ribbed Triangular Duct Solar Air Heater Using Computational Fluid Dynamics (CFD)
,”
J. Mech. Sci. Technol.
,
32
(1), pp. 399–404.
54.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renewable Energy
,
115
, pp.
824
835
.
You do not currently have access to this content.