An opportunity for increasing the parabolic solar power plant efficiency is substituting the actual subcritical Rankine power cycles with the innovative s-CO2 Brayton cycles. In this paper, three configurations are assessed: the recompression cycle (RC), the partial cooling with recompression cycle (PCRC), and the recompression with main compression intercooling cycle (RCMCI), with one reheating stage. The thermodynamic parameters are optimized with three algorithms: SUBPLEX, UOBYQA, and NEWUOA, and the results validated with thermoflow Software. The parabolic troughs and linear Fresnel solar collectors are studied with different heat transfer fluids (HTFs): Solar Salt, HITEC XL, Therminol-VP1, Syltherm 800, and Therminol 75. The dual-loop solar field (SF), combining thermal oil and molten salt (MS) in the same solar plant, is also analyzed. The plant power output and plant energy efficiency are translated into SF aperture area and cost at design point. From the point of view of the plant efficiency and SF cost, the PTC and LF solar collector with Solar Salt as HTF coupled to a s-CO2 Brayton RCMCI cycle is selected as the optimum design solution and compared with the actual PTC Rankine solar plant performance at design point. The total recuperator conductance (UA) plays an important role in optimizing the plant performance, limited by the minimum heat exchangers (HX) pinch point. The UA increment could compensate the HX pressure drop and the compressor inlet temperature (CIT) increment, both impacting very negatively in the s-CO2 plant performance.

References

1.
UN Climate Change Paris Agreement
, 2015, “
United Nations Framework Convention on Climate Change
,” United Nations, Framework Convention on Climate Change, Paris, France, accessed Aug. 1, 2017, http://newsroom.unfccc.int/paris-agreement/
2.
Silvi
,
C.
,
1911–1980
, “
The Work of Italian Solar Energy Pioneer Giovanni Francia
,” Gruppo per la storia dell'energia solare, Rome, Italy, accessed Aug. 1, 2017, https://www.researchgate.net/publication/228422322_the_work_of_italian_solar_energy_pioneer_giovanni_francia_1911-1980
3.
Solaripedia, 2009, “
Solar One Central Tower Project
,” Solaripedia, Seattle, WA, accessed Aug. 29, 2017, http://www.solaripedia.com/13/31/solar_one_and_two_(now_defunct).html
4.
NREL, 2015, “
Solar Electric Generating Station (SEGS) IX
,” National Renewable Energy Laboratory, Golden, CO, accessed Aug. 29, 2017, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=36
5.
NREL, 2017, “
Genesis Solar Energy Project
,” National Renewable Energy Laboratory, Golden, CO, accessed Aug. 29, 2017, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=54
6.
NREL, 2015, “
Solana Generating Station
,” National Renewable Energy Laboratory, Golden, CO, accessed Aug. 29, 2017, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=23
7.
NREL, 2015, “
Mojave Solar Project
,” National Renewable Energy Laboratory, Golden, CO, accessed Aug. 29, 2017, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=57
8.
ENEA,
2001
, “
Solar Thermal Energy Production: Guidelines and Future Programs of ENEA
,” Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy, accessed Aug. 29, 2017, http://www.solaritaly.enea.it/Documentazione/Solar%20Thermal%20Energy%20Production.pdf
9.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blakeand
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.
10.
Maccari
,
A.
,
2006
, “
ENEA Activities on CSP (Concentrating Solar Power) Technologies
,”
Technologies Parabolic TroughWorkshop
, Incline Village, NV, Feb. 14–16, pp. 35–47.
11.
Maccari
,
A.
,
Donnola
,
S.
,
Matino
,
F.
, and
Tamano
,
S.
,
2015
, “
Archimede Solar Energy Molten Salt Parabolic Trough Demo Plant: Improvements and Second Year of Operation
,”
AIP Conf. Proc.
,
1734
(1), p. 100007.http://dx.doi.org/10.1063/1.4949195
12.
Archimede Solarenergy, 2017, “
Archimede Solar Energy. Receiver Tubes
,” Archimede Solarenergy, Massa Martana, Italy, accessed Aug. 29, 2017, http://www.archimedesolarenergy.it/en_prodotti.htm
13.
NREL, 2016, “
Gansu Akesai 50MW Molten Salt Trough Project
,” National Renewable Energy Laboratory, Golden, CO, accessed Aug. 29, 2017, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=5306
14.
NREL, 2013, “
PuertoErrado 2 Thermosolar Power Plant: Novatec Linear Fresenel Technology
,” National Renewable Energy Laboratory, Golden, CO, accessed Aug. 29, 2017, https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=159
15.
Southwest Research Institute, 2017, “
Supercritical CO2 Power Cycles Symposium
,” Southwest Research Institute, San Antonio, TX, accessed Aug. 29, 2017, http://www2.swri.org/www2/sco2/
16.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(3), pp. 287–295.
17.
Feher
,
E. G.
,
1967
, “
The Supercritical Thermodynamic Power Cycle
,” International Energy Conversion Engineering Conference, Miami Beach, FL, Aug. 13–17, Paper No.
4348
.http://users.ugent.be/~mvbelleg/literatuur%20SCHX%20-%20Stijn%20Daelman/ORCNext/Supercritical/Literature%20Study/Literature/Papers%20ORC/ORC%20Transcritical/1968%20-%20Feher%20-The%20supercritical%20thermodynamic%20power%20cycle.pdf
18.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
, 2004, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Advanced Nuclear Power Technology Program, Massachusetts Institute of Technology, Cambridge, MA, Technical Report No. MIT-ANP-TR-100.
19.
Santini
,
L.
,
Accornero
,
C.
, and
Cioncolini
,
A.
,
2016
, “
On the Adoption of Carbon Dioxide Thermodynamic Cycles for Nuclear Power Conversion: A Case Study Applied to Mochovce 3 Nuclear Power Plant
,”
Appl. Energy
,
181
, pp.
446
463
.
20.
Kung
,
S. C.
,
Shingledecker
,
J. P.
,
Thimsen
,
D.
,
Wright
,
G.
,
Tossey
,
B. M.
, and
Sabau
,
A. S.
, 2016, “
Oxidation/Corrosion in Materials for Supercritical CO2 Power Cycles
,” Fifth International Symposium-Supercritical CO2 Power Cycles, San Antonio, TX, Mar. 28–31, Paper No.
9
.http://sco2symposium.com/www2/sco2/papers2016/Materials/009paper.pdf
21.
Turchi
,
C.
,
Bing
,
C.
, and
Lausten
,
M.
,
2014
, “
10 MW Supercritical CO2 Turbine Test
,” National Renewable Energy Laboratory, Golden, CO, Report No.
DE-EE0001589
.https://ay14-15.moodle.wisc.edu/prod/pluginfile.php/99692/mod_resource/content/1/Final%20Report%20EE0001589%20NONPROPRIETARY%20draft%202013-12-26.pdf
22.
Shiferaw
,
D.
,
Montero Carrero
,
J.
, and
Le Pierres
,
R.
, 2016, “
Economical Analysis of s-CO2 Brayton Cycles With PCHE Recuperator Design Optimization
,”
Fifth International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, Paper No.
53
.http://sco2symposium.com/www2/sco2/papers2016/HeatExchanger/053paper.pdf
23.
The Supercritical Carbon Dioxide Tech Team
, 2016, “
M$80 Investment to Build Supercritical Carbon Dioxide Pilot Plant Test Facility
,” U.S. Department of Energy, Washington, DC.
24.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
25.
Pidaparti Sandeep
,
R.
,
Hruska Patrick
,
J.
,
Moisseytsev
,
A.
, and
Sienicki James
,
J.
, 2016, “
Technical and Economic Feasibility of Dry Air Cooling for the Supercritical CO2 Brayton Cycle Using Existing Technology
,”
Fifth International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, Paper No.
77
.http://www.sco2symposium.com/www2/sco2/papers2016/HeatRejection/077paper.pdf
26.
Hruska Patric
,
J.
,
Nellis Gregory
,
F.
, and
Klein Sanford
,
A.
, 2016, “
Methodology of Modeling and Comparing the Use of Direct Air-Cooling for a Supercritical Carbon Dioxide Brayton Cycle and a Steam Rankine Cycle
,”
Fifth International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, Paper No.
22
.http://sco2symposium.com/www2/sco2/papers2016/HeatRejection/022pres.pdf
27.
Pasch
,
J.
, 2016, “
Pressure-Enthalpy Diagram for Recompression Closed Brayton Cycle Using s-CO2
,” Sandia National Laboratories, Alburquerque, NM, Report No.
SAND2016-4779 TR
.http://energy.sandia.gov/download/38063/
28.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
.
29.
Noall
,
J.
, and
Pasch James
,
J.
,
2014
, “
Achievable Efficiency and Stability of Supercritical CO2 Compression Systems
,”
Supercritical CO2 Power Cycle Symposium
, Pittsburgh, PA, Sept. 9–10.http://www.sco2symposium.com/www2/sco2/papers2014/turbomachinery/51PPT-Noall.pdf
30.
Bidkar
,
R. A.
,
Mann
,
A.
,
Singh
,
R.
,
Sevincer
,
E.
,
Cich
,
S.
,
Day
,
M.
,
Kulhanek
,
C. D.
,
Thatte
,
A. M.
,
Peter
,
A. M.
,
Hofer
,
D.
, and
Moore
,
J.
,
2016
, “
Conceptual Designs of 50MWe and 450MWe Supercritical CO2 Turbomachinery Trains for Power Generation from Coal. Part 1: Cycle and Turbine
,”
5th International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, pp. 1–18.http://www.swri.org/sites/default/files/conceptual-designs-of-50mwe-and-450mwe-supercritical-co2-turbomachinery-trains-for-power-generation-from-coal-part-1-cycle-and-turbine-bidkar.pdf
31.
Zhang
,
X.
,
Sun
,
X.
, and
Christensen
,
R. N.
, 2016, “
Optimization of S-Shaped Fin Channels in a Printed Circuit Heat Exchanger for Supercritical CO2 Test Loop
,”
Fifth International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31, Paper No.
18
.http://sco2symposium.com/www2/sco2/papers2016/HeatExchanger/018paper.pdf
32.
Lang
,
C.
, and
Cuthbert
,
J.
,
2012
, “
Evaluation of Dual Loop Design for Parabolic Trough
,”
18th SolarPaces Conference
, Marrakech, Morocco, Sept. 11–14.
33.
Vogel
,
A. K.
,
Reilinga
,
H.
,
Fluria
,
T. P.
, and
Platzera
,
W. J.
,
2015
, “
High Temperatures in Line Focusing Systems: Dual Loop Cycle Efficiency and Heat Losses
,”
Energy Procedia
69
, pp.
1461
1470
.
34.
Liu
,
Q.
,
Bai
,
Z.
,
Sun
,
J.
,
Yan
,
Y.
,
Gao
,
Z.
, and
Jin
,
H.
,
2016
, “
Thermodynamics Investigation of a Solar Power System Integrated Oil and Molten Salt as Heat Transfer Fluids
,”
Appl. Therm. Eng.
,
93
, pp.
967
977
.
35.
Rowan
,
T.
,
1990
, “
Functional Stability Analysis of Numerical Algorithms
,”
Ph.D. thesis
, University of Texas at Austin, Austin, TX.https://pdfs.semanticscholar.org/19a1/51f1b70c834f676eedce2602de83266ddc92.pdf
36.
Powell
,
M. J. D.
,
2002
, “
UOBYQA: Unconstrained Optimization By Quadratic Approximation
,”
Math. Program., Ser. B
,
92
(
3
), pp.
555
582
.
37.
Powell
,
M. J. D.
,
2004
, “
The NEWUOA Software for Unconstrained Optimization Without Derivatives
,” Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, UK, Report No.
DAMTP 2004/NA05
.http://www.optimization-online.org/DB_FILE/2005/01/1045.pdf
38.
Dyreby
,
J.
, 2014, “
Modeling the Supercritical CO2 Brayton Cycle With Recompression
,”
Ph.D. thesis
, University of Wisconsin-Madison, Madison, WI.https://search.proquest.com/openview/8948e313dfadaa310efcc8de04ad8ce2/1?pq-origsite=gscholar&cbl=18750&diss=y
39.
Middleton Bobby
,
D.
,
Pasch James
,
R.
,
Kruizenga
,
A.
, and
Walker
,
M.
,
2016
, “
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor
,” Sandia National Laboratories, Alburquerque, NM, Report No.
SAND2016-0696
.http://prod.sandia.gov/techlib/access-control.cgi/2016/160696.pdf
40.
Thermoflow, 2017, “
Thermoflow Software
,” Thermoflow, Fayville, MA, accessed Aug. 29, 2017, http://www.thermoflow.com
41.
NIST, 2013, “
Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Aug. 29, 2017, https://www.nist.gov/srd/refprop
42.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
43.
Tse Louis
,
A.
, and
Neises
,
T.
, 2016, “
Analysis and Optimization for Off-Design Performance of the Recompression s-CO2 Cycles for High Temperature CSP Applications
,”
Fifth International Symposium-Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 29–31, Paper No.
100
.http://sco2symposium.com/www2/sco2/papers2016/SystemModeling/100paper.pdf
44.
Kurup
,
P.
, and
Turchi
,
C. S.
,
2015
, “
Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-6A20-65228
.https://www.nrel.gov/docs/fy16osti/65228.pdf
45.
Wright
,
S. A.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
, 2011, “
Overview of Supercritical CO2 Power Cycle Development at Sandia National Laboratories
,”
University Turbine Systems Research Workshop
, Columbus, OH, Oct. 25–27.https://www.netl.doe.gov/publications/proceedings/11/utsr/pdf/wed/Wright%20SCO2%20Power%20Cycle%20Summary%20UTSR%202011%20v2a.pdf
46.
Nellis
,
G.
, and
Klein
,
S.
,
2012
,
Heat Transfer
,
Cambridge University Press
,
Cambridge, UK
.
48.
Buecker
,
D.
, and
Wagner
,
W.
,
2006
, “
A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures From the Melting Line to 675 K and Pressures up to 900 MPa
,”
J. Phys. Chem. Ref. Data
,
35
(
1
), pp.
205
266
.
49.
Gavic
,
D.
,
2012
, “
Investigation of Water, Air, and Hybrid Cooling For Supercritical Carbon Dioxide Brayton Cycles
,” Master's thesis, University of Wisconsin–Madison, Madison, WI.
50.
Zhai
,
H.
, and
Rubin
,
E. S.
,
2010
, “
Performance and Cost of Wet and Dry Cooling Systems for Pulverized Coal Power Plants With and Without Carbon Capture and Storage
,”
Energy Policy
,
38
(
10
), pp.
5653
5660
.
51.
Coco-Enríquez
,
L.
,
Muñoz-Antón
,
J.
, and
Martínez-Val Peñalosa
,
J. M.
,
2017
, “
Dual Loop Line-Focusing Solar Power Plants With Supercritical Brayton Power Cycles
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17664
17680
.
52.
Turchi
,
C.
,
2016
, “
Supercritical CO2 Power Cycles: Next-Gen Power for CSP?
,”
SunShot CSP Summit and Integration Workshop
, San Diego, CA, Apr. 19–21.https://energy.gov/sites/prod/files/2016/08/f33/01-Turchi%20-%20sCO2%20Power%20Cycle%20for%20CSP%20SunShot%20Summit%202016-04-19%20Rev5.pptx
53.
Cheang
,
V. T.
,
Hedderwick
,
R. A.
, and
McGregor
,
C.
,
2015
, “
Benchmarking Supercritical Carbon Dioxide Cycles Against Steam Rankine Cycles for Concentrated Solar Power
,”
Sol. Energy
,
113
, pp.
199
211
.
54.
Stettenheim, J.,
2016
, “
Advanced Low-Cost Receiver for Parabolic Trough Solar Power-Design for Manufacturing
,”
SunShot CSP Summit and Integration Workshop
, San Diego, CA, Apr. 19–21.https://energy.gov/sites/prod/files/2016/08/f33/Collectors%20AM%2001-%20Norwich%20Technologies%20-.pdf
You do not currently have access to this content.