Solar air-conditioning (AC) is an attractive AC system but it has intermittent output, and therefore, a conventional heater is needed as a backup. This study presents the effect of ratio of heat delivered by solar (Qsolar) to the total heat delivered to an adsorption chiller (Qsolar + Qheater) or solar fraction (SF) on the economic and environmental performance of a solar AC. This solar AC is not a solar-assisted AC, and therefore, it needs to fully cover the cooling load. The cooling demand of an office building in Kuala Lumpur, and the performance of flat-plate collectors and the adsorption chiller were calculated by equest and watsun software and by a mathematical model, respectively. Economic performance was analyzed by life-cycle cost analysis, whereas the environmental performance was analyzed by using typical emissions rate of energy systems used. It was found that a boiler was a better solution than an electric heater as a backup heater. Furthermore, the net profit (NP) at lower SF was higher because of its lower capital investment, but more emissions were released compared to the conventional AC because of the boiler operation. Thus, when economic and environmental performance were fairly considered, it is appropriate to have solar AC with an SF around 0.74.

References

1.
Mahlia
,
T. M. I.
,
Masjuki
,
H. H.
, and
Choudhury
,
I. A.
,
2002
, “
Potential Electricity Savings by Implementing Energy Labels for Room Air Conditioner in Malaysia
,”
Energy Convers. Manage.
,
43
(
16
), pp.
2225
2233
.
2.
Mahlia
,
T. M. I.
,
Masjuki
,
H. H.
,
Choudhury
,
I. A.
, and
Saidur
,
R.
,
2001
, “
Potential CO2 Reduction by Implementing Energy Efficiency Standard for Room Air Conditioner in Malaysia
,”
Energy Convers. Manage.
,
42
(
14
), pp.
1673
1685
.
3.
Qian
,
S.
,
Gluesenkamp
,
K.
,
Hwang
,
Y.
,
Rademacher
,
R.
, and
Chun
,
H.
,
2013
, “
Cyclic Steady State Performance of Adsorption Chiller With Low Regeneration Temperature Zeolite
,”
Energy
,
60
, pp.
517
526
.
4.
Rezk
,
A. R. M.
, and
Al-Dadah
,
R. K.
,
2012
, “
Physical and Operating Conditions Effects on Silica Gel/Water Adsorption Chiller Performance
,”
Appl. Energy
,
89
(
1
), pp.
921
929
.
5.
Aristov
,
Y. I.
,
Glaznev
,
I. S.
, and
Girnik
,
I. S.
,
2012
, “
Optimization of Adsorption Dynamics in Adsorptive Chillers: Loose Grains Configuration
,”
Energy
,
46
(
1
), pp.
484
492
.
6.
Niazmand
,
H.
,
Talebian
,
H.
, and
Mahdavikhah
,
M.
,
2012
, “
Bed Geometrical Specifications Effects on the Performance of Silica/Water Adsorption Chillers
,”
Int. J. Refrig.
,
35
(
8
), pp.
2261
2274
.
7.
Lu
,
Z. S.
,
Wang
,
R. Z.
,
Xia
,
Z. Z.
,
Lu
,
X. R.
,
Yang
,
C. B.
,
Ma
,
Y. C.
, and
Ma
,
G. B.
,
2013
, “
Study of a Novel Solar Adsorption Cooling System and a Solar Absorption Cooling System With New CPC Collectors
,”
Renewable Energy
,
50
, pp.
299
306
.
8.
Spencer
,
J. D.
,
Moton
,
J. M.
,
Gibbons
,
W. T.
,
Gluesenkamp
,
K.
,
Ahmed
,
I. I.
,
Tavemer
,
A. M.
,
McGahagan
,
D.
,
Tesfaye
,
M.
,
Gupta
,
C.
,
Boume
,
R. P.
,
Monje
,
V.
, and
Jackson
,
G. S.
,
2013
, “
Design of a Combined Heat, Hydrogen, and Power Plant From University Campus Waste Streams
,”
Int. J. Hydrogen Energy
,
39
(
12
), pp.
4889
4900
.
9.
Bruno
,
J. C.
,
Lopez-Villada
,
J.
,
Ortiga
,
J.
, and
Coronas
,
A.
,
2006
, “
Techno-Economic Design Study of a Large-Scale Solar Cooling Plant Integrated in a District Heating and Cooling Network
,”
61st ATI National Congress, Solar Heating and Cooling
International Session, Perugia, Italy, Sept. 12–15, pp.
227
232
.
10.
Balaras
,
C. A.
,
Grossman
,
G.
,
Henning
,
H.-M.
,
Ferreira
,
C. A. I.
,
Podesser
,
E.
,
Wang
,
L.
, and
Wiemken
,
E.
,
2007
, “
Solar Air Conditioning in Europe—An Overview
,”
Renewable Sustainable Energy Rev.
,
11
(
2
), pp.
299
314
.
11.
Ferreira
,
C. I.
, and
Kim
,
D.-S.
,
2014
, “
Techno-Economic Review of Solar Cooling Technologies Based on Location-Specific Data
,”
Int. J. Refrig.
,
39
, pp.
23
37
.
12.
Tsoutsos
,
T.
,
Anagnostou
,
J.
,
Pritchard
,
C.
,
Karagiorgas
,
M.
, and
Agoris
,
D.
,
2003
, “
Solar Cooling Technologies in Greece. An Economic Viability Analysis
,”
Appl. Therm. Eng.
,
23
(
11
), pp.
1427
1439
.
13.
Lambert
,
M. A.
, and
Beyene
,
A.
,
2007
, “
Thermo-Economic Analysis of Solar Adsorption Heat Pump
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1593
1611
.
14.
Fasfous
,
A.
,
Asfar
,
J.
,
Al-Salaymeh
,
A.
,
Sakhrieh
,
A.
,
Al_hamamre
,
Z.
,
Al-bawwab
,
A.
, and
Hamdan
,
M.
,
2013
, “
Potential of Utilizing Solar Cooling in the University of Jordan
,”
Energy Convers. Manage.
,
65
, pp.
729
735
.
15.
Allouhi
,
A.
,
Kousksou
,
T.
,
Jamil
,
A.
,
El Rhafiki
,
T.
,
Mourad
,
Y.
, and
Zeraouli
,
Y.
,
2015
, “
Economic and Environmental Assessment of Solar Air-Conditioning Systems in Morocco
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
770
781
.
16.
Mammoli
,
A.
,
Vorobieff
,
P.
,
Barsun
,
H.
,
Burnett
,
R.
, and
Fisher
,
D.
,
2010
, “
Energetic, Economic and Environmental Performance of a Solar-Thermal-Assisted HVAC System
,”
Energy Build.
,
42
(
9
), pp.
1524
1535
.
17.
Hang
,
Y.
,
Qu
,
M.
, and
Zhao
,
F.
,
2011
, “
Economical and Environmental Assessment of an Optimized Solar Cooling System for a Medium-Sized Benchmark Office Building in Los Angeles, California
,”
Renewable Energy
,
36
(
2
), pp.
648
658
.
18.
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2009
, “
Experimental Investigation and Theoretical Analysis of the Solar Adsorption Cooling System in a Green Building
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
17
27
.
19.
Luo
,
H. L.
,
Dai
,
Y. J.
,
Wang
,
R. Z.
,
Wu
,
J. Y.
,
Xu
,
Y. X.
, and
Shen
,
J. M.
,
2006
, “
Experimental Investigation of a Solar Adsorption Chiller Used for Grain Depot Cooling
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1218
1225
.
20.
Wang
,
D. C.
,
Shi
,
Z. X.
,
Yang
,
Q. R.
,
Tian
,
X. L.
,
Zhang
,
J. C.
, and
Wu
,
J. Y.
,
2007
, “
Experimental Research on Novel Adsorption Chiller Driven by Low Grade Heat Source
,”
Energy Convers. Manage.
,
48
(
8
), pp.
2375
2381
.
21.
InvenSor
,
2013
, “
InvenSor LTC 10 Plus
,”
InvenSor GmbH
,
Lutherstadt Wittenberg, Germany
.
22.
InvenSor
,
2013
, “
InvenSor HTC 18 Plus
,”
InvenSor GmbH
,
Lutherstadt Wittenberg, Germany
.
23.
Basrawi
,
F.
,
Yamada
,
T.
, and
Obara
,
S.
,
2014
, “
Economic and Environmental Based Operation Strategies of a Hybrid Photovoltaic–Microgas Turbine Trigeneration System
,”
Appl. Energy
,
121
, pp.
174
183
.
24.
Strachan
,
N.
, and
Farrell
,
A.
,
2006
, “
Emissions From Distributed Versus Centralized Generation: The Importance of System Performance
,”
Energy Policy
,
34
(
17
), pp.
2677
2689
.
You do not currently have access to this content.