A novel concept of a particle receiver for high-temperature solar applications was developed and evaluated in the present work. The so-called Centrifugal Particle Receiver (CentRec) uses small bauxite particles as absorber, heat transfer, and storage medium at the same time. Due to advantageous optical and thermal properties, the particles can be heated up to 1000 °C without sintering in the storage. High thermal efficiencies at high outlet temperatures are expected indicating a promising way for cost reduction in solar power tower applications. A 15kWth prototype was designed, built, and tested in order to demonstrate the feasibility and potential of the proposed concept. Extensive high flux experiments were conducted, investigating the thermal receiver performance and efficiency. For an input flux of 670 kW m−2, the target outlet temperature of 900 °C at a receiver efficiency of about 75% was successfully demonstrated.

References

1.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,”
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2011-2419.
2.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.10.1016/j.rser.2013.08.099
3.
Martin
,
J.
, and
Vitko
,
J.
,
1982
, “
ASCUAS: A Solar Central Receiver Utilizing a Solid Thermal Carrier
,”
Sandia National Laboratories
, Technical Report No. SAND 82-8203.
4.
Flamant
,
G.
,
1982
, “
Theoretical and Experimental Study of Radiant Heat Transfer in a Solar Fluidized-Bed Receiver
,”
AIChE J.
,
28
(
4
), pp.
529
535
.10.1002/aic.690280402
5.
Wu
,
S. F.
, and
Narayama
,
T.
,
1988
, “
Commercial Direct Absorption Receiver Design Studies
,” Technical Report No. SAND88-7038.
6.
Singer
,
C.
,
Buck
,
R.
,
Pitz-Paal
,
R.
, and
Mller-Steinhagen
,
H.
,
2010
, “
Assessment of Solar Power Tower Driven Ultrasupercritical Steam Cycles Applying Tubular Central Receivers With Varied Heat Transfer Media
,”
ASME J. Sol. Energy Eng.
,
132
(
4
), p.
041010
.10.1115/1.4002137
7.
Hruby
,
J. M.
,
1986
, “
A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications
,” Sandia National Laboratories, Technical Report No. SAND 86-8211.
8.
Falcone
,
P.
,
Noring
,
J.
, and
Hruby
,
J.
,
1985
, “
Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System
,” Sandia National Laboratories, Technical Report No. SAND85-8208.
9.
Hruby
,
J. M.
,
Steeper
,
R. R.
,
Evans
,
G. H.
, and
Crowe
,
C. T.
,
1988
, “
An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles
,” Sandia National Laboratories, Technical Report No. SAND 86-8714.
10.
Griffin
,
J.
, and
Stahl
,
K.
,
1986
, “
Optical Properties of Solid Particle Receiver Materials I, II
,”
Sol. Energy Mater.
,
14
(
3–5
), pp.
395
425
.10.1016/0165-1633(86)90062-6
11.
Siegel
,
N.
, and
Kolb
,
G.
,
2008
, “
Design and On-Sun Testing of a Solid Particle Receiver Prototype
,”
ASME
Paper No. ES2008-54090.10.1115/ES2008-54090
12.
Ho
,
C.
,
Khalsa
,
S.
, and
Siegel
,
N.
,
2009
, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Progresses and Storage
,”
ASME
Paper No. ES2009-90035.10.1115/ES2009-90035
13.
Xiao
,
G.
,
Guo
,
K. K.
,
Luo
,
Z. Y.
,
Ni
,
M. J.
,
Zhang
,
Y. M.
, and
Wang
,
C.
,
2014
, “
Simulation and Experimental Study on a Spiral Solid Particle Solar Receiver
,”
Appl. Energy
,
113
, pp.
178
188
.10.1016/j.apenergy.2013.06.045
14.
Tan
,
T.
, and
Cheng
,
Y.
,
2010
, “
Review of Study on Solid Particle Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
265
276
.10.1016/j.rser.2009.05.012
15.
Rger
,
M.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2011
, “
Face-Down Solid Particle Receiver Using Recirculation
,”
ASME J. Sol. Energy. Eng.
,
133
(
3
), p.
031009
.10.1115/1.4004269
16.
Gobereit
,
B.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Mller-Steinhagen
,
H.
, and
Pitz-Paal
,
R.
,
2012
, “
Assessment of a Falling Solid Particle Receiver With Numerical Simulation
,”
Proceedings of SolarPACES 2012
,
Marrakech, Morocco
, September 11–14.
17.
Wu
,
W.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Uhlig
,
R.
, and
Pitz-Paal
,
R.
,
2014
, “
Proof of Concept Test of a Centrifugal Particle Receiver
,”
Energy Procedia
,
49
, pp.
560
568
.10.1016/j.egypro.2014.03.060
18.
Dibowski
,
G.
,
Neumann
,
A.
,
Rietbrock
,
P.
,
Willsch
,
C.
,
Sck
,
J.-P.
, and
Funken
,
K.-H.
,
2007
, “
Der neue Hochleistungsstrahler des DLR—Grundlagen, Technik, Anwendung
,” Solar Colloquium, Cologne, Germany.
19.
VdTV-Werkstoffblatt, Werkstoff-Nr. 2.4663, WB 485, 12.2009.
20.
Microtherm Block Data Sheet.
21.
Schriever-Schubring
,
J.
,
2013
,
Messung der Partikeltemperatur in einem Zentrifugalreceiver fr Solarturmkraftwerke
,” Master's thesis, University of Stuttgart, Stuttgart, Germany.
22.
Minkina
,
W.
, and
Dudzik
,
S.
,
2009
,
Infrared Thermography—Errors and Uncertainties
, 1st ed.,
Wiley
,
West Sussex, UK
.
23.
Neumann
,
A.
,
1997
, “
Procedures for Flux Measurements for Solar Receivers Using Video Cameras and Lambertian Targets
,” SolarPACES, DLR, Germany, Report No. III-3/97.
24.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
25.
ISOTECH PEGASUS Kalibrier-System (Modell 853), Manual.
26.
Willsch
,
C.
,
2013
,
private communication.
27.
Siegel
,
N.
,
2012
,
private communication.
28.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
,
1970
,
Thermophysical Properties of Matter
, 1st ed., Vol.
5
,
Springer
,
New York
.
29.
Blanke
,
W.
, and
Grigull
,
U.
,
1989
,
Thermophysikalische Stoffgren
, 1st ed.,
Springer-Verlag
,
Berlin, Germany
.
30.
Netzsch DSC 404 F1, Manual.
31.
Wu
,
W.
,
Gobereit
,
B.
,
Singer
,
C.
,
Amsbeck
,
L.
, and
Pitz-Paal
,
R.
,
2011
, “
Direct Absorption Receivers for High Temperatures
,”
Proceedings of SolarPACES 2011
,
Granada, Spain
, September 20–23.
You do not currently have access to this content.