Slag is one of the main waste materials of the iron and steel manufacturing. Every year about 20 × 106 tons of slag are generated in the U.S. and 43.5 × 106 tons in Europe. The valorization of this by-product as heat storage material in thermal energy storage (TES) systems has numerous advantages which include the possibility to extend the working temperature range up to 1000 °C, the reduction of the system cost, and at the same time, the decrease of the quantity of waste in the iron and steel industry. In this paper, two different electric arc furnace (EAF) slags from two companies located in the Basque Country (Spain) are studied. Their thermal stability and compatibility in direct contact with the most common heat transfer fluids (HTFs) used in the concentrated solar power (CSP) plants are analyzed. The experiments have been designed in order to cover a wide range of temperature up to the maximum operation temperature of 1000 °C corresponding to the future generation of CSP plants. In particular, three different fluids have been studied: synthetic oil (Syltherm 800®) at 400 °C, molten salt (Solar Salt) at 500 °C, and air at 1000 °C. In addition, a complete characterization of the studied slags and fluids used in the experiments is presented showing the behavior of these materials after 500 hr laboratory-tests.

References

1.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2013
, “
A Review of Studies on Central Receiver Solar Thermal Power Plants
,”
Renewable Sustainable Energy Rev.
,
23
(
7
), pp.
12
39
.10.1016/j.rser.2013.02.017
2.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation—Part 1: Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.10.1016/j.rser.2009.07.035
3.
Khare
,
S.
,
Dell’Amico
,
M.
,
Knight
,
C.
, and
McGarry
,
S.
,
2013
, “
Selection of Materials for High Temperature Sensible Energy Storage
,”
Sol. Energy Mater Sol. Cells
,
115
(
8
), pp.
114
122
.10.1016/j.solmat.2013.03.009
4.
Fernández
,
A. I.
,
Martínez
,
M.
,
Segarra
,
M.
,
Martorell
,
I.
, and
Cabeza
,
L. F.
,
2010
, “
Selection of Materials With potential in Sensible Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
94
(
10
), pp.
1723
1729
.10.1016/j.solmat.2010.05.035
5.
Liu
,
M.
,
Saman
,
W.
, and
Bruno
,
F.
,
2012
, “
Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2118
2132
.10.1016/j.rser.2012.01.020
6.
Cot-Gores
,
J.
,
Castell
,
A.
, and
Cabeza
,
L. F.
,
2012
, “
Thermochemical Energy Storage and Conversion: A State-of-the-Art Review of the Experimental Research Under Practical Conditions
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5207
5224
.10.1016/j.rser.2012.04.007
7.
IRENA
,
2012
,
Renewable Energy Technologies: Cost Analysis Series-Concentrating Solar Power
, International Renewable Energy Agency, Abu Dhabi, UAE.http://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-csp.pdf
8.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High-Temperature Thermal Energy Storage for Power Generation—Part 2: Case Studies
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
56
72
.10.1016/j.rser.2009.07.036
9.
Heath
,
G.
,
Turchi
,
C.
,
Burkhardt
,
J.
, and
Kutscher
,
C.
,
2009
, “
Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline
,”
Proceedings of the 3rd International Conference on Energy Sustainability
,
San Francisco
,
CA
, pp.
689
690
.
10.
Martin
,
C.
,
Breidenbach
,
N.
, and
Eck
,
M.
,
2014
, “
Screening and Analysis of Potential Filler Materials for Molten Salt Thermocline Storages
,”
ASME
Paper No. ES2014-6493.10.1115/ES2014-6493
11.
Laing
,
D.
,
Bahl
,
C.
,
Bauer
,
T.
,
Fiss
,
M.
,
Breidenbach
,
N.
, and
Hempel
,
M.
,
2012
, “
High-Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants
,”
Proc. IEEE
,
100
(
2
), pp.
516
526
.10.1109/JPROC.2011.2154290
12.
Py
,
X.
,
Calvet
,
N.
,
Olives
,
R.
,
Meffre
,
A.
,
Echegut
,
P.
,
Bessada
,
C.
,
Veron
,
E.
, and
Ory
,
S.
,
2011
, “
Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
031008
.10.1115/1.4004267
13.
Van Oss
,
H.
,
2013
,
2011 Minerals Yearbook: Slag-Iron and Steel
,
U.S. Geological Survey
,
Washington, DC
.http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/myb1-2011-fesla.pdf
14.
Calvet
,
N.
,
Dejean
,
G.
,
Unamunzaga
,
L.
, and
Py
,
X.
,
2013
, “
Waste From Metallurgic Industry: A Sustainable High-Temperature Thermal Energy Storage Material for Concentrated Solar Power
,”
ASME
Paper No. ES2013-1833310.1115/ES2013-18333.
15.
Gil
,
A.
,
Nicolas
,
C.
,
Ortega
,
I.
,
Risueño
,
E.
,
Faik
,
A.
,
Blanco
,
P.
, and
Rodríguez-Aseguinolaza
,
J.
,
2014
, “
Characterization of a By-Product From Steel Industry Applied to Thermal Energy Storage in Concentrated Solar Power
,”
Proceedings of the 99th Eurotherm Seminar
,
Lleida
,
Spain
, Paper No. EUROTHERM99-01-066.http://www.researchgate.net/publication/262764649_Characterization_of_a_by-product_from_steel_industry_applied_to_thermal_energy_storage_in_Concentrated_Solar_Power
16.
EUROSLAG
and
EUROFER
,
2012
,
Position Paper on the Status of Ferrous Slag Complying With the Waste Framework Directive 2008/CE (Articles 5/6) and the REACH Regulation
, European Slag Association (EUROSLAG) and European Steel Association (EUROFER)http://www.euroslag.com/fileadmin/_media/images/Status_of_slag/Position_Paper_April_2012.pdf.
17.
International Energy Agency
,
2010
, Technology Roadmap: Concentrating Solar Power,
International Energy Agency (IEA)
, Paris.https://www.iea.org/publications/freepublications/publication/csp_roadmap.pdf
18.
IHOBE
,
1999
,
Libro blanco para la minimización de residuos y emisiones de escorias de acería
, IHOBE, Bilbao, Spain.http://www.ihobe.eus/Publicaciones/Ficha.aspx?IdMenu=750e07f4-11a4-40da-840c-0590b91bc032&Cod=c70da2d6-f615-437e-ae5d-5eef0d61f1ab&Idioma=es-ES
19.
Rodriguez-Carvajal
,
J.
,
1993
, “
Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction
,”
Phys. B
,
192
(
1–2
), pp.
55
59
.10.1016/0921-4526(93)90108-I
20.
Calvet
,
N.
,
Gómez
,
J. C.
,
Faik
,
A.
,
Roddatis
,
V. V.
,
Meffre
,
A.
,
Glatzmaier
,
G. C.
,
Doppiu
,
S.
, and
Py
,
X.
,
2013
, “
Compatibility of a Post-Industrial Ceramic With Nitrate Molten Salts for Use as Filler Material in the Thermocline Storage System
,”
Appl. Energy
,
109
(
9
), pp.
387
393
.10.1016/j.apenergy.2012.12.078
21.
Dow Chemical
, Syltherm 800 Heat Transfer Fluid Product Technical Data,
Dow
Chemical, Midland, MI.http://www.loikitsdistribution.com/files/syltherm-800-technical-data-sheet.pdf
You do not currently have access to this content.