Direct absorption solar thermal collectors have recently been shown to be a promising technology for photothermal energy conversion but many parameters affecting the overall performance of such systems have not been studied in depth, yet alone optimized. Earlier work has shown that the overall magnitude of the extinction coefficient can play a drastic role, with too high of an extinction coefficient actually reducing the efficiency. This study investigates how the extinction coefficient impacts the collector efficiency and how it can be tuned spatially to optimize the efficiency, and why this presents a unique design over conventional solar thermal collection systems. Three specific extinction profiles are investigated: uniform, linearly increasing, and exponentially increasing with the exponentially increasing profile demonstrating the largest efficiency improvement.

1.
Minardi
,
J. E.
, and
Chuang
,
H. N.
, 1975, “
Performance of a ‘Black’ Liquid Flat-Plate Solar Collector
,”
Sol. Energy
0038-092X,
17
, pp.
179
183
.
2.
Abdelrahman
,
M.
,
Fumeaux
,
P.
, and
Suter
,
P.
, 1979, “
Study of Solid-Gas-Suspensions Used for Direct Absorption of Concentrated Solar Radiation
,”
Sol. Energy
0038-092X,
22
, pp.
45
48
.
3.
Hunt
,
A. J.
, 1978, “
Small Particle Heat Exchangers
,” Lawrence Berkeley Laboratory Report No. LBL-7841.
4.
Kumar
,
S.
, and
Tien
,
C. L.
, 1990, “
Analysis of Combined Radiation and Convection in a Particulate Laden Liquid Film
,”
ASME J. Sol. Energy Eng.
0199-6231,
112
, pp.
293
300
.
5.
Bohn
,
M. S.
, and
Wang
,
K. Y.
, 1988, “
Experiments and Analysis on the Molten Salt Direct Absorption Receiver Concept
,”
ASME J. Sol. Energy Eng.
0199-6231,
110
, pp.
45
51
.
6.
Houf
,
W. G.
, and
Grief
,
R.
, 1987, “
Radiative Transfer in a Solar Absorbing Particle Laden Flow
,”
Chem. Eng. Commun.
0098-6445,
51
, pp.
153
165
.
7.
Tyagi
,
H.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
0199-6231,
131
(
4
), p.
041004
.
8.
Phelan
,
P. E.
,
Bhattacharya
,
P.
, and
Prasher
,
R. S.
, 2005, “
Nanofluids for Heat Transfer Applications
,”
Annu. Rev. Heat Transfer
1049-0787,
14
, pp.
255
275
.
9.
Prasher
,
R. S.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
10.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2004, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
95
, p.
6492
.
11.
Prasher
,
R. S.
, and
Phelan
,
P. E.
, 2005, “
Modeling of Radiative and Optical Behavior of Nanofluids Based on Multiple and Dependent Scattering Theories
,”
ASME
Paper No. IMECE2005-80302.
12.
Prasher
,
R. S.
, 2005, “
Modification of Plank Blackbody Emissive Power and Intensity in Particulate Media Due to Multiple and Dependent Scattering
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
903
910
.
13.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
1530-6984,
6
, pp.
419
423
.
14.
Otanicar
,
T.
,
Phelan
,
P. E.
,
Rosengarten
,
G.
, and
Prasher
,
R. S.
, 2009, “
Experimental Results and Numerical Modeling of a Micro Solar Thermal Collector With Nanofluids
,”
ASME
Paper No. UECTC-RE205.
15.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
, 2010, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
1941-7012,
2
, p.
033102
.
16.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Adrian
,
R. J.
, and
Prasher
,
R. S.
, 2009, “
Vapor Generation in a Nanoparticle Liquid Suspension Using a Focused, Continuous Laser
,”
Appl. Phys. Lett.
0003-6951,
95
, p.
161907
.
17.
Otanicar
,
T.
,
Taylor
,
R. A.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009, “
Impact of Size and Scattering Mode on the Optimal Solar Absorbing Nanofluid
,”
ASME
Paper No. 2009-90066.
18.
Duffie
,
J. A.
, and
Beckman
,
W. A.
, 1980,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
19.
Philip
,
J.
,
Shima
,
P. D.
, and
Raj
,
B.
, 2008, “
Nanofluid With Tunable Thermal Properties
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
043108
.
20.
Dunphy Guzman
,
K. A.
,
Finnegan
,
M. P.
, and
Banfield
,
J. F.
, 2006, “
Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles
,”
Environ. Sci. Technol.
0013-936X,
40
(
24
), pp.
7688
7693
.
You do not currently have access to this content.