Today, to ensure efficient operation of a photovoltaic (PV) system renders as an undoubtedly major concern. Toward this direction, scope of this work is the assessment of infrared thermography as a PV module’s condition monitoring and, subsequently, performance evaluation method. The idea is based on the fact that any abnormality to the temperature pattern of an under inspection equipment implies a dysfunction case. In particular, specific thermographic measurements were applied to a PV module with known, abnormally low performance. Following the basic processing of the acquired thermal images, the extracted temperature data were contrasted with the PV module’s expected operating temperature. The results validated the presence of a problematic solar cell that refers to a “hot spot” within the tested PV module. This paper concludes with a discussion regarding the advantages, the limitations, and, ultimately, the potentiality of the intended approaches as reliable condition monitoring method through performance evaluation of PV modules.

1.
McQueen Smith
,
B.
, 1978, “
Condition Monitoring by Thermography
,”
NDT Int.
0308-9126,
11
(
3
), pp.
121
122
.
2.
Tsanakas
,
J. A.
, and
Botsaris
,
P. N.
, 2009, “
Non-Destructive In Situ Evaluation of a PV Module Performance Using Infrared Thermography
,”
Proceedings of the Sixth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies—CM and MFPT
, Dublin, Republic of Ireland. pp.
1264
1273
.
3.
Mau
,
S.
,
Krametz
,
T.
,
Jahna
,
W.
, and
Fechner
,
H.
, 2004, “
Quality Testing for PV Modules According to Standards and Performance Control for Supporting Manufacturing
,”
Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition—EUPVSEC
, Paris, France.
4.
Maldague
,
X. P. V.
, 2001,
Theory and Practice of Infrared Technology for Nondestructive Testing
, 1st ed.,
Wiley-Interscience
,
New York
, Chap. 1.
5.
Sakagami
,
T.
, and
Kubo
,
S.
, 2002, “
Applications of Pulse Heating Thermography and Lock-In Thermography to Quantitative Nondestructive Evaluations
,”
Infrared Phys. Technol.
1350-4495,
43
(
3–5
), pp.
211
218
.
6.
Moropoulou
,
A.
,
Palyvos
,
J.
,
Karoglou
,
M.
, and
Panagopoulos
,
V.
, 2007, “
Using IR Thermography for Photovoltaic Array Performance Assessment
,”
Proceedings of the Fourth International Conference on NDT
, Chania, Greece.
7.
Krenzinger
,
A.
, and
de Andrade
,
A. C.
, 2007, “
Accurate Outdoor Glass Thermographic Thermometry Applied to Solar Energy Devices
,”
Sol. Energy
0038-092X,
81
, pp.
1025
1034
.
8.
Breitenstein
,
O.
, and
Rakotoniaina
,
J. P.
, 2005, “
Electrothermal Simulation of a Defect in a Solar Cell
,”
J. Appl. Phys.
0021-8979,
97
, p.
074905
.
9.
Breitenstein
,
O.
,
Rakotoniaina
,
J. P.
,
Kaes
,
M.
,
Seren
,
S.
,
Pernau
,
T.
,
Hahn
,
G.
,
Warta
,
W.
, and
Isenberg
,
J.
, 2005, “
Lock-In Thermography—A Universal Tool for Local Analysis of Solar Cells
,”
Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition—EUPVSEC
, Barcelona, Spain, pp.
590
593
.
10.
Kasemann
,
M.
,
Schubert
,
M. C.
,
The
,
M.
,
Köber
,
M.
,
Hermle
,
M.
, and
Warta
,
W.
, 2006, “
Comparison of Luminescence Imaging and Illuminated Lock-In Thermography on Silicon Solar Cells
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
224102
.
11.
Van der Borg
,
N. J. C. M.
, and
Burgers
,
A. R.
, 2003, “
Thermography: Quality Control for Module Manufacturing
,”
Proceedings of the Third World Conference on Photovoltaic Energy Conversion
, Osaka, Japan, pp.
1946
1947
(poster).
12.
Gupta
,
R.
, and
Breitenstein
,
O.
, 2007, “
Unsteady-State Lock-In Thermography—Application to Shunts in Solar Cells
,”
QIRT J.
,
4
(
1
), pp.
85
105
.
13.
Joshi
,
A. S.
,
Dincer
,
I.
, and
Reddy
,
B. V.
, 2009, “
Performance Analysis of Photovoltaic Systems: A Review
,”
Renewable Sustainable Energy Rev.
1364-0321,
13
(
8
), pp.
1884
1897
.
14.
Walters
,
R. R.
, 2005, “
Combined Photovoltaic and Thermal Power System Improves Cost Effectiveness
,”
Cogener. & Distrib. Gener. J.
,
20
(
2
), pp.
34
47
.
15.
Chow
,
T. T.
,
Ji
,
J.
, and
He
,
W.
, 2007, “
Photovoltaic-Thermal Collector System for Domestic Application
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
(
2
), pp.
205
209
.
16.
Hoyer
,
U.
,
Burkert
,
A.
,
Auer
,
R.
, and
Buerhop-Lutz
,
C.
, 2009, “
Analysis of PV Modules by Electroluminescence and IR Thermography
,”
Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition—EUPVSEC
, Hamburg, Germany, pp.
3262
3266
.
17.
Luque
,
A.
, and
Hegedus
,
S.
, 2003,
Handbook of Photovoltaic Science and Engineering
,
Wiley-Interscience
,
Chichester
, Chap. 7, pp.
297
299
.
18.
Simon
,
M.
, and
Meyer
,
E. L.
, 2010, “
Detection and Analysis of Hot-Spot Formation in Solar Cells
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
94
(
2
), pp.
106
113
.
19.
Wohlgemuth
,
J.
, and
Herrmann
,
W.
, 2005, “
Hot Spot Tests for Crystalline Silicon Modules
,”
Proceedings of the 31st IEEE Photovoltaic Specialists Conference
, Orlando, FL, pp.
1062
1063
.
20.
Skoplaki
,
E.
,
Boudouvis
,
A. G.
, and
Palyvos
,
J. A.
, 2008, “
A Simple Correlation for the Operating Temperature of Photovoltaic Modules of Arbitrary Mounting
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
92
(
11
), pp.
1393
1402
.
You do not currently have access to this content.