The ionic conductivities of mixtures of ZnO in Na3AlF6 and in xCaF2yNa3AlF6 mixtures were established with a swept-sine measurement technique. A millivolt sinusoidal voltage at frequencies from 1000 Hz to 25,000 Hz was impressed on a system containing the electrolytes. The system’s frequency response was used to establish the conductivities. The influence of these conductivities on the potential of a solar thermal electrolytic process was evaluated using two process performance parameters: the back-work ratio and the fraction of minimum solar thermal energy required to drive the metal production reaction. We found the conductivity of mixtures of ZnONa3AlF6 to be independent of the concentration of ZnO for weight percentages of ZnO from 0.5% to 5%. For temperatures 1240–1325 K the conductivity is close to that of pure Na3AlF6, 3±0.5Ω1cm1. At temperatures from 1350 K to 1425 K it jumps to 6±0.5Ω1cm1 When CaF2 is added to the mixture, the electrolyte’s conductivity drops. We thus expect that calcium cations are not present to any important extent in the electrolyte. When CaF2 is part of the chemical system, the concentration of ZnO can have a measurable impact on the electrolyte’s conductivity. Combining the conductivity results with the two solar process performance parameters illustrates the importance of operating the solar process at low current densities when the temperature range is 1200–1500 K. The results further suggest that one should consider studying the electrolytic process at 1800 K.

1.
Müller
,
R.
, and
Steinfed
,
A.
, 2008, “
H2O Splitting Thermochemical Cycle Based on ZnO/Zn-Redox: Quenching the Effluents From the ZnO Dissociation
,”
Chem. Eng. Sci.
0009-2509,
63
, pp.
217
227
.
2.
Müller
,
R.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
, 2008, “
Transient Heat Transfer in a Directly-Irradiated Solar Chemical Reactor for the Thermal Dissociation of ZnO
,”
Appl. Therm. Eng.
1359-4311,
28
(
5–6
), pp.
524
531
.
3.
Lipinski
,
W.
,
Thommen
,
D.
, and
Steinfeld
,
A.
, 2006, “
Unsteady Radiative Heat Transfer Within a Suspension of ZnO Particles Undergoing Thermal Dissociation
,”
Chem. Eng. Sci.
0009-2509,
61
(
21
), pp.
7029
7035
.
4.
Palumbo
,
R. E.
,
Lédé
,
J.
,
Boutin
,
O.
,
Ricart
,
E. E.
,
Steinfeld
,
A.
,
Möller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
, 1998, “
The Production of Zn From ZnO in a High Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process
,”
Chem. Eng. Sci.
0009-2509,
53
(
14
), pp.
2503
2517
.
5.
Möller
,
S.
, and
Palumbo
,
R. D.
, 2001, “
Solar Thermal Decomposition Kinetics of ZnO in the Temperature Range 1950–2400 K
,”
Chem. Eng. Sci.
0009-2509,
56
(
15
), pp.
4505
4515
.
6.
Müller
,
R.
, 2005, “
Reaktor-Entwicklung für die solar thermishce Produktion von Zink
,” Ph.D. thesis, ETH-Zürich, Zürich, Switzerland.
7.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
, 2006, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy
0038-092X,
80
(
5
), pp.
500
511
.
8.
Möller
,
S.
, and
Palumbo
,
R. D.
, 2001, “
The Development of a Solar Chemical Reactor for the Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
(
2
), pp.
83
90
.
9.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2002, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
, Vol.
15
, 3rd ed.,
Academic
,
New York
.
10.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production Via a 2-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
124
, pp.
55
62
.
11.
Möller
,
S.
, 2001, “
Entwicklung eines Reaktors zur solarthermishchen Herstellung von Zinc aus Zincoxid zur Energiespeicherung mit Hilfe konzentrierter Sonnenstrahlung
,” Ph.D., thesis, ETH-Zürich, Zürich, Switzerland.
12.
Keunecke
,
M.
,
Meier
,
A.
, and
Palumbo
,
R.
, 2004, “
Solar Thermal Decomposition of Zinc Oxide: An Initial Investigation of the Recombination Reaction
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
2695
2704
.
13.
Lédé
,
J.
,
Elorza-Ricart
,
E.
, and
Ferrer
,
M.
, 2001, “
Solar Thermal Splitting of Zinc Oxide: A Review of Some of the Rate Controlling Factors
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
(
2
), pp.
91
97
.
14.
Adinberg
,
R.
, and
Epstein
,
M.
, 2004, “
Experimental Study of Solar Reactors for Carboreduction of Zinc Oxide
,”
Energy
0360-5442,
29
(
5–6
), pp.
757
769
.
15.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
, 2004, “
A Two Cavity Reactor for Solar Chemical Processes: Heat Transfer Model and Application to Carbothermic Reduction of ZnO
,”
Energy
0360-5442,
29
, pp.
771
787
.
16.
Wieckert
,
C.
,
Frommherz
,
U.
,
Kräupl
,
S.
,
Guillot
,
E.
,
Olalde
,
G.
,
Epstein
,
M.
,
Santén
,
S.
,
Osinga
,
T.
, and
Steinfeld
,
A.
, 2007, “
A 300 kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc
,”
ASME J. Sol. Energy Eng.
0199-6231,
129
, pp.
190
196
.
17.
Parks
,
D. J.
,
Scholl
,
K. L.
, and
Fletcher
,
E. A.
, 1988, “
A Study of the Use of Y2O3 Doped ZrO2 Membranes for Solar Electrothermal and Solar Thermal Separation Technologies
,”
Energy
0360-5442,
13
, pp.
121
136
.
18.
Edward
,
E. A.
, and
Noring
,
J. E.
, 1983, “
High Temperature Solar Electrothermal Processing—Zinc From Zinc Oxide
,”
Energy
0360-5442,
8
(
3
), pp.
247
254
.
19.
Fletcher
,
E. A.
,
Macdonald
,
F. J.
, and
Kunnerth
,
D.
, 1985, “
High Temperature Solar Electrothermal Processing II—Zinc From Zinc Oxide
,”
Energy
0360-5442,
10
(
12
), pp.
1255
1272
.
20.
Palumbo
,
R. D.
, and
Fletcher
,
E. A.
, 1988, “
High Temperature Solar Electrothermal Processing III—Zinc From Zinc Oxide at 1200–1675 K Using a Non-Consumable Anode
,”
Energy
0360-5442,
13
(
4
), pp.
319
332
.
21.
Thonstad
,
J.
,
Fellner
,
P.
,
Haarberg
,
G. M.
,
Hives
,
J.
,
Kvande
,
H.
, and
Sterten
,
A.
, 1982,
Aluminum Electrolysis Fundamentals of the Hall–Héroult Process
, 3rd ed.,
Aluminum-Verlag
,
Dusseldorf
.
22.
Bard
,
A. J.
, and
Faulkner
,
L. R.
, 2001,
Electrochemical Methods, Fundamentals and Applications
, 2nd ed.,
Wiley
,
New York
.
23.
Janz
,
G. J.
, 1988, “
Thermodynamic and Transport Properties for Molten Salts: Correlation Equations for Critically Evaluated Density, Surface Tension, Electrical Conductance, and Viscosity Data
,”
J. Phys. Chem. Ref. Data Suppl.
,
17
(
2
), pp.
159
266
.
24.
Wang
,
X.
,
Peterson
,
R. D.
, and
Tabereaux
,
A. T.
, 1993, “
Multiple Regression Equation for the Electrical Conductivity of Cyrolitic Melts
,”
Light Metals, Proceedings of Sessions, 122nd TMS Annual Meeting
, pp.
247
255
.
25.
Perry
,
D. L.
, and
Phillips
,
S. L.
, 1995,
Handbook of Inorganic Compounds
,
CRC
,
Boca Raton, FL
.
26.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
McMurdie
,
H. F.
, 1979,
Phase Diagrams for Ceramists
, 4th ed.,
American Ceramic Society
,
Columbus, OH
.
You do not currently have access to this content.