The composite materials of Ni-applied, porous zirconia balls with molten Na2CO3 salt were examined for use in solar thermochemical reforming of methane as the catalyst with high-temperature thermal storage. The millimeter-sized composite balls were tested on the heat discharge property and the catalytic activity for CO2 reforming of methane in a laboratory-scale reactor. The high heat capacity and large latent heat (heat of solidification) of the composite molten salt circumvented the temperature dropping of the catalyst bed, which resulted in the alleviation of rapid decay in chemical conversion during cooling mode of the reactor. The composite catalyst is expected to realize stable operation in the solar reformer under fluctuation of insolation by a cloud passage.

1.
Grasse
,
W.
,
Tyner
,
C. E.
, and
Steinfeld
,
A.
, 1999, “
International R & D collaboration in developing solar thermal technologies for electric power and solar chemistry: The solar PACES program of the international Energy Agency (IEA)
,”
J. Phys. IV
1155-4339,
9
, pp.
Pr3
-17–Pr3-
22
.
2.
Tamaura
,
Y.
, 2000, “
Solar hybrid methanol production from coal and natural gas by solar thermochemical process: CO2 reduction and cost evaluation
,”
Solar Thermal 2000, Proceedings of the 10th Solar PACES International Symposium on Solar Thermal Concentrating Technologies
,
Sydney
, pp.
189
192
.
3.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
U.
, and
Sugarmen
,
C.
, 2001, “
Solar upgrading of fuels for generation of electricity
,”
J. Sol. Energy Eng.
0199-6231,
123
, pp.
160
163
.
4.
Levitan
,
R.
,
Rosin
,
H.
, and
Levy
,
M.
, 1989, “
Chemical reactions in a solar furnace-direct heating of the reactor in a tubular receiver
,”
Sol. Energy
0038-092X,
42
(
3
), pp.
267
272
.
5.
Böhmer
,
M.
,
Langnickel
,
U.
, and
Sanchez
,
M.
, 1991, “
Solar steam reforming of methane
,”
Sol. Energy Mater.
0165-1633,
24
, pp.
441
448
.
6.
Levy
,
M.
, 1993, “
Studies in closed and open loop solar chemical heat pipes
,”
Proceedings of the 6th International Symposium on Solar Thermal Concentrating Technology
(
Mojacar
, Spain, 1992), Ser. Ponencias, Madrid, Vol.
2
, pp.
1003
1011
.
7.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
, 1993, “
Solar energy storage via a closed-loop chemical heat pipe
,”
Sol. Energy
0038-092X,
50
(
2
), pp.
179
189
.
8.
Epstein
,
M.
,
Spiewak
,
I.
,
Segal
,
A.
,
Levy
,
I.
,
Lieberman
,
D.
,
Meri
,
M.
, and
Lerner
,
V.
, 1997, “
Solar experiments with a tubular reformer
,”
Proceedings of the 8th International Symposium on Solar Thermal Concentrating Technology
(
Cologne
, Germany, 1996),
M.
Becker
et al.
, eds., Heidelberg, Vol.
3
, pp.
1209
1229
.
9.
Yao
,
C.
, and
Epstein
,
M.
, 1996, “
Maximizing the output of the solar-driven tubular reactor
,”
Sol. Energy
0038-092X,
57
(
4
), pp.
283
290
.
10.
Buck
,
R.
,
Muir
,
J. F.
, and
Hogan
,
R. E.
, 1991, “
Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project
,”
Sol. Energy Mater.
0165-1633,
24
, pp.
449
463
.
11.
Muir
,
J. F.
,
Hogan
,
R. E.
, Jr.
,
Skocypec
,
R. D.
, and
Buck
,
R.
, 1994, “
Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I—Test and analysis
,”
Sol. Energy
0038-092X,
52
(
6
), pp.
467
477
.
12.
Skoypec
,
R. D
,
Hogan
,
R. E.
, Jr.
, and
Muir
,
J. F.
, 1994, “
Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: II—Modeling and analysis
,”
Sol. Energy
0038-092X,
52
(
6
), pp.
479
490
.
13.
Buck
,
R.
,
Abele
,
M.
,
Bauer
,
H.
,
Seitz
,
A.
, and
Tamme
,
R.
, 1994, “
Development of a volumetric receiver-reactor for solar methane reforming
,”
J. Sol. Energy Eng.
0199-6231,
116
, pp.
73
78
.
14.
Abele
,
M.
,
Bauer
,
H.
,
Buck
,
R.
,
Tamme
,
R.
, and
Wörner
,
A.
, 1996, “
Design and test results of a receiver-reactor for solar methane reforming
,”
J. Sol. Energy Eng.
0199-6231,
118
, pp.
339
346
.
15.
Wörner
,
A.
, and
Tamme
,
R.
, 1998, “
CO2 reforming of methane in a solar driven volumetric receiver-reactor
,”
Catal. Today
0920-5861,
46
, pp.
165
174
.
16.
Segal
,
A.
, and
Epstein
,
M.
, 2003, “
Solar ground reformer
,”
Sol. Energy
0038-092X,
75
, pp.
479
490
.
17.
Segal
,
A.
, and
Epstein
,
M.
, 2000, “
The optics of the solar tower reflector
,”
Sol. Energy
0038-092X,
69
, pp.
229
241
.
18.
Kodama
,
T.
,
Koyanagi
,
T.
,
Shimizu
,
T.
, and
Kitayama
,
Y.
, 2001, “
CO2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes
,”
Energy Fuels
0887-0624,
15
, pp.
60
65
.
19.
Gokon
,
N.
,
Oku
,
Y.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
, 2002, “
Methane reforming with CO2 in molten salt using FeO catalyst
,”
Sol. Energy
0038-092X,
72
(
3
), pp.
243
250
.
20.
Kodama
,
T.
,
Isobe
,
Y.
,
Kondoh
,
Y.
,
Yamaguchi
,
S.
, and
Shimizu
,
K.-I.
, 2004, “
Ni∕ceramic∕molten-salt composite catalyst with high-temperature thermal storage for use in solar reforming processes
,”
Energy
0360-5442,
29
, pp.
895
903
.
You do not currently have access to this content.