The solar reforming of methane with CO2 is investigated using a direct irradiated absorber subjected to solar flux levels in the range 180-250 kWm−2. This solar thermochemical process can upgrade the calorific value of the methane feed by 17% to produce hydrogen via the water-gas shift reaction. The volumetric receiver-reactor is best suited for this application because of its compactness and low thermal capacity. The new type of catalytically-activated “metallic foam” absorber–an Ni-Cr-Al-foam absorber applied with Ru/Al2O3–was found to have a superior thermal performance at relatively low solar fluxes when compared to conventional ceramic foam absorbers.

1.
Grasse
,
W.
,
Tyner
,
C. E.
, and
Steinfeld
,
A.
,
1999
, “
International R & D Collaboration in Developing Solar Thermal Technologies for Electric Power and Solar Chemistry: The solarPACES Program of the International Energy Agency (IEA)
,”
J. Phys. (France)
,
9
, pp.
3
-
17
.
2.
Steinfeld
,
A.
, and
Schubnell
,
M.
,
1993
, “
Optimum Aperture Size and Operating Temperature of a Solar Cavity-receiver
,”
Sol. Energy
,
50
(
1
), pp.
19
25
.
3.
Edwards, J., Duffy, G., Benito, R., Do, T., Dave, N., and McNaughton, R., 2000, “CSIRO’s Solar Thermal-fossil Energy Hybrid Technology for Advanced Power Generation,” Solar Thermal 2000, Proc. the 10th SolarPACES International Symposium on Solar Thermal Concentrating Technologies, H. Kreetz, K. Lovegrove, W. Meike, editors., The Meeting Manager Pty Ltd, Sydney, pp. 27–32.
4.
Bo¨hmer
,
M.
,
Langnickel
,
U.
, and
Sanchez
,
M.
,
1991
, “
Solar Steam Reforming of Methane
,”
Solar Energy Materials
,
24
, pp.
441
448
.
5.
Epstein, M., Spiewak, I., Segal, A., Levy, I., Lieberman, D., Meri, M., and Lerner, V., 1997, “Solar Experiments with a Tubular Reformer,” Proc. of the 8th International Symposium on Solar Thermal Concentrating Technology (Cologne, Germany, 1996), M. Becker, M. Bo¨hmer, editors., C. F. Muller, Heidelberg, Vol. 3, pp. 1209–1229.
6.
Buck
,
R.
,
Muir
,
J. F.
, and
Hogan
,
R. E.
,
1991
, “
Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/reactor: The CAESAR Project
,”
Solar Energy Materials
,
24
, pp.
449
463
.
7.
Muir
,
J. F.
,
Hogan
,
R. E.
, Jr.
,
Skocypec
,
R. D.
, and
Buck
,
R.
,
1994
, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I-Test and analysis
,”
Sol. Energy
,
52
(
6
), pp.
467
477
.
8.
Skoypec
,
R. D.
,
Hogan
, Jr.,
R. E.
, and
Muir
,
J. F.
,
1994
, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: II-Modeling and Analysis
,”
Sol. Energy
,
52
(
6
), pp.
479
490
.
9.
Buck
,
R.
,
Abele
,
M.
,
Bauer
,
H.
,
Seitz
,
A.
, and
Tamme
,
R.
,
1994
, “
Development of a Volumetric Receiver-reactor for Solar Methane Reforming
,”
ASME J. Sol. Energy Eng.
,
116
, pp.
73
78
.
10.
Abele
,
M.
,
Bauer
,
H.
,
Buck
,
R.
,
Tamme
,
R.
, and
Wo¨rner
,
A.
,
1996
, “
Design and Test Results of a Receiver-reactor for Solar Methane Reforming
,”
ASME J. Sol. Energy Eng.
118
, pp.
339
346
.
11.
Tanashev
,
Y. Y.
,
Fedoseev
,
V. I.
, and
Aristov
,
Y. I.
,
1997
, “
High-temperature Catalysis Driven by the Direct Action of Concentrated Light or a High-density Electron Beam
,”
Catal. Today
,
39
, pp.
251
260
.
12.
Wo¨rner
,
A.
, and
Tamme
,
R.
,
1998
, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-reactor
,”
Catal. Today
,
46
, pp.
165
174
.
13.
Kiyama, A., Kondoh, Y., Yokoyama, T., Shimizu, K-I., and Kodama, T., 2002, “New Catalytically-activated Metal/ceramic Foam Absorbers for Solar Reforming Receiver-reactor,” Proc. 11th Solar PACES International Symposium, A. Steinfeld, ed., Paul Scherrer Institute, Villgen PSI, pp. 337–343.
14.
Kodama
,
T.
,
Kiyama
,
A.
, and
Shimizu
,
K.-I.
,
2003
, “
Catalytically-Activated Metal Foam Absorber for Light-to-Chemical Energy Conversion via Solar Reforming of Methane
,”
Energy Fuels
,
17
, pp.
13
17
.
15.
Gregg
,
D. W.
,
Taylor
,
R. W.
,
Campbell
,
J. H.
,
Taylor
,
J. R.
, and
Cotton
,
A.
,
1980
, “
Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixtures
,”
Sol. Energy
,
25
, pp.
353
364
.
16.
Antal
,
M. J.
,
Hofmann
,
L.
, and
Moreiro
,
J. R.
,
1983
, “
Design and Operation of a Solar Fired Biomass Flash Pyrolysis Reactor
,”
Sol. Energy
,
30
, pp.
299
312
.
17.
Taylor
,
R. W.
,
Berjoan
,
R.
, and
Coutures
,
J. P.
,
1983
, “
Solar Gasification of Carbonaceous Materials
,”
Sol. Energy
,
30
, pp.
513
525
.
18.
Nakamura
,
T.
,
1977
, “
Hydrogen Production from Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
, pp.
467
475
.
19.
Sibieude
,
F.
,
Ducarroir
,
M.
,
Tofighi
,
A.
, and
Ambriz
,
J.
,
1982
, “
High Temperature Experiments with a Solar Furnace. The Decomposition of Fe3O4, Mn3O4, CdO
,”
Int. J. Hydrogen Energy
,
7
(
1
), pp.
79
88
.
20.
Lundberg
,
M.
,
1993
, “
Model Calculations on Some Feasible Two-step Water Splitting Processes
,”
Int. J. Hydrogen Energy
,
18
(
5
), pp.
369
376
.
21.
Ehrensberger
,
K.
,
Frei
,
A.
,
Kuhn
,
P.
,
Oswald
,
H.
, and
Hug
,
P.
,
1995
, “
Comparative Experimental Investigations of the Water-splitting Reaction with Iron Oxide Fe1−yO and Iron Manganese Oxides (Fe1−xMnx)1−yO,
Solid State Ionics
,
78
, pp.
151
160
.
22.
Tamaura
,
T.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Ehrensberger
,
K.
,
1995
, “
Production of Solar Hydrogen by a Novel, 2-step, Water-splitting Thermochemical Cycle
,”
Energy (Oxford)
,
20
(
4
), pp.
325
330
.
You do not currently have access to this content.