The solar reforming of methane with is investigated using a direct irradiated absorber subjected to solar flux levels in the range 180-250 kWm−2. This solar thermochemical process can upgrade the calorific value of the methane feed by 17% to produce hydrogen via the water-gas shift reaction. The volumetric receiver-reactor is best suited for this application because of its compactness and low thermal capacity. The new type of catalytically-activated “metallic foam” absorber–an Ni-Cr-Al-foam absorber applied with –was found to have a superior thermal performance at relatively low solar fluxes when compared to conventional ceramic foam absorbers.
1.
Grasse
, W.
, Tyner
, C. E.
, and Steinfeld
, A.
, 1999
, “International R & D Collaboration in Developing Solar Thermal Technologies for Electric Power and Solar Chemistry: The solarPACES Program of the International Energy Agency (IEA)
,” J. Phys. (France)
, 9
, pp. 3
-17
.2.
Steinfeld
, A.
, and Schubnell
, M.
, 1993
, “Optimum Aperture Size and Operating Temperature of a Solar Cavity-receiver
,” Sol. Energy
, 50
(1
), pp. 19
–25
.3.
Edwards, J., Duffy, G., Benito, R., Do, T., Dave, N., and McNaughton, R., 2000, “CSIRO’s Solar Thermal-fossil Energy Hybrid Technology for Advanced Power Generation,” Solar Thermal 2000, Proc. the 10th SolarPACES International Symposium on Solar Thermal Concentrating Technologies, H. Kreetz, K. Lovegrove, W. Meike, editors., The Meeting Manager Pty Ltd, Sydney, pp. 27–32.
4.
Bo¨hmer
, M.
, Langnickel
, U.
, and Sanchez
, M.
, 1991
, “Solar Steam Reforming of Methane
,” Solar Energy Materials
, 24
, pp. 441
–448
.5.
Epstein, M., Spiewak, I., Segal, A., Levy, I., Lieberman, D., Meri, M., and Lerner, V., 1997, “Solar Experiments with a Tubular Reformer,” Proc. of the 8th International Symposium on Solar Thermal Concentrating Technology (Cologne, Germany, 1996), M. Becker, M. Bo¨hmer, editors., C. F. Muller, Heidelberg, Vol. 3, pp. 1209–1229.
6.
Buck
, R.
, Muir
, J. F.
, and Hogan
, R. E.
, 1991
, “Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/reactor: The CAESAR Project
,” Solar Energy Materials
, 24
, pp. 449
–463
.7.
Muir
, J. F.
, Hogan
, R. E.
, Jr., Skocypec
, R. D.
, and Buck
, R.
, 1994
, “Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I-Test and analysis
,” Sol. Energy
, 52
(6
), pp. 467
–477
.8.
Skoypec
, R. D.
, Hogan
, Jr., R. E.
, and Muir
, J. F.
, 1994
, “Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: II-Modeling and Analysis
,” Sol. Energy
, 52
(6
), pp. 479
–490
.9.
Buck
, R.
, Abele
, M.
, Bauer
, H.
, Seitz
, A.
, and Tamme
, R.
, 1994
, “Development of a Volumetric Receiver-reactor for Solar Methane Reforming
,” ASME J. Sol. Energy Eng.
, 116
, pp. 73
–78
.10.
Abele
, M.
, Bauer
, H.
, Buck
, R.
, Tamme
, R.
, and Wo¨rner
, A.
, 1996
, “Design and Test Results of a Receiver-reactor for Solar Methane Reforming
,” ASME J. Sol. Energy Eng.
118
, pp. 339
–346
.11.
Tanashev
, Y. Y.
, Fedoseev
, V. I.
, and Aristov
, Y. I.
, 1997
, “High-temperature Catalysis Driven by the Direct Action of Concentrated Light or a High-density Electron Beam
,” Catal. Today
, 39
, pp. 251
–260
.12.
Wo¨rner
, A.
, and Tamme
, R.
, 1998
, “CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-reactor
,” Catal. Today
, 46
, pp. 165
–174
.13.
Kiyama, A., Kondoh, Y., Yokoyama, T., Shimizu, K-I., and Kodama, T., 2002, “New Catalytically-activated Metal/ceramic Foam Absorbers for Solar Reforming Receiver-reactor,” Proc. 11th Solar PACES International Symposium, A. Steinfeld, ed., Paul Scherrer Institute, Villgen PSI, pp. 337–343.
14.
Kodama
, T.
, Kiyama
, A.
, and Shimizu
, K.-I.
, 2003
, “Catalytically-Activated Metal Foam Absorber for Light-to-Chemical Energy Conversion via Solar Reforming of Methane
,” Energy Fuels
, 17
, pp. 13
–17
.15.
Gregg
, D. W.
, Taylor
, R. W.
, Campbell
, J. H.
, Taylor
, J. R.
, and Cotton
, A.
, 1980
, “Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixtures
,” Sol. Energy
, 25
, pp. 353
–364
.16.
Antal
, M. J.
, Hofmann
, L.
, and Moreiro
, J. R.
, 1983
, “Design and Operation of a Solar Fired Biomass Flash Pyrolysis Reactor
,” Sol. Energy
, 30
, pp. 299
–312
.17.
Taylor
, R. W.
, Berjoan
, R.
, and Coutures
, J. P.
, 1983
, “Solar Gasification of Carbonaceous Materials
,” Sol. Energy
, 30
, pp. 513
–525
.18.
Nakamura
, T.
, 1977
, “Hydrogen Production from Water Utilizing Solar Heat at High Temperatures
,” Sol. Energy
, 19
, pp. 467
–475
.19.
Sibieude
, F.
, Ducarroir
, M.
, Tofighi
, A.
, and Ambriz
, J.
, 1982
, “High Temperature Experiments with a Solar Furnace. The Decomposition of Fe3O4, Mn3O4, CdO
,” Int. J. Hydrogen Energy
, 7
(1
), pp. 79
–88
.20.
Lundberg
, M.
, 1993
, “Model Calculations on Some Feasible Two-step Water Splitting Processes
,” Int. J. Hydrogen Energy
, 18
(5
), pp. 369
–376
.21.
Ehrensberger
, K.
, Frei
, A.
, Kuhn
, P.
, Oswald
, H.
, and Hug
, P.
, 1995
, “Comparative Experimental Investigations of the Water-splitting Reaction with Iron Oxide Fe1−yO and Iron Manganese Oxides (Fe1−xMnx)1−yO,
” Solid State Ionics
, 78
, pp. 151
–160
.22.
Tamaura
, T.
, Steinfeld
, A.
, Kuhn
, P.
, and Ehrensberger
, K.
, 1995
, “Production of Solar Hydrogen by a Novel, 2-step, Water-splitting Thermochemical Cycle
,” Energy (Oxford)
, 20
(4
), pp. 325
–330
.Copyright © 2004
by ASME
You do not currently have access to this content.