A vibrating fluidized bed reactor was constructed and interfaced with the High-Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, CO. Various precursor mixtures of aluminum and aluminum nitride were heated for approximately 10 to 15 minutes using focused sunlight with an intensity as high as 2000 kW/m2. Particles ranging in size from 2 μm to 10 μm were produced with the heating and fluidization process. X-ray diffraction and chemical composition analyses of the product indicate virtually complete conversion of aluminum to aluminum nitride for some precursor mixtures. High conversion was also achieved using multi-pass processing.

1.
Agari
Y.
,
Ueda
A.
,
Tanaka
M.
, and
Nagai
S.
,
1990
, “
Thermal Conductivity of a Polymer Filled with Particles in the Wide Range from Low to Super-High Volume Content
,”
Journal of Applied Polymer Science
, Vol.
40
, pp.
929
941
.
2.
Duncan, D. A., and Dirksen, H. A., 1980, “Calcium Carbide Production in a Solar Furnace,” SERI/TR-98326-1, Golden, CO.
3.
Dunmead, S. D., 1997, “Processes,” in Carbide, Nitride, and Boride Materials Synthesis and Processing, Alan W. Weimer (editor). Chapman & Hall, London, pp.229–269.
4.
Flamant
G.
,
Ferriere
A.
,
Laplaze
D.
, and
Monty
C.
,
1999
, “
Solar Processing of Materials: Opportunities and New Frontiers
,”
Solar Energy
, Vol.
66
, No.
2
, pp.
117
132
.
5.
Franck
M.
,
Blanpain
B.
,
Oberlander
B. C.
,
Cells
J. P.
, and
Roos
J. R.
,
1993
, “
Surface Modification of TiN Hard Coatings with Concentrated Solar Energy
,”
Solar Energy Materials and Solar Cells
, Vol.
31
, pp.
401
414
.
6.
Gokoglu
S. A.
, and
Rosner
D. E.
,
1986
, “
Thermophoretically Augmented Mass Transfer Rates to Solid Walls Across Laminar Boundary Layers
,”
AIAA Journal
, Vol.
24
, No.
1
, p.
172
172
.
7.
Jenkins, D., Winston, R., O’Gallagher, J., Bingham, C, Lewandowski, A., Pitts, R., and Scholl, K., 1996, “Recent Testing of Secondary Concentrators at NREL’s High-Flux Solar Furnace,” in ASME JOURNAL OF SOLAR ENGINEERING, pp. 29–33.
8.
Kolker
H.
, and
Grellner
W.
,
1988
, “
Aluminum Nitride—A New Substrate Material
,”
CFI Ceram. Forum Int.
, Vol.
65
, Nos.
3–4
, p.
75
75
.
9.
Lewandowski
A.
,
1993
, “
Deposition of Diamond-Like Carbon Films and Other Materials Processes Using a Solar Furnace
,”
Mat. Tech.
, Vol.
8
, pp.
237
249
.
10.
Lewandowski
A.
,
Bingham
C.
,
O’Gallagher
J.
,
Winston
R.
, and
Sagie
D.
,
1991
, “
Performance Characteristics of the SERI High-Flux Solar Furnace
,”
Solar Energy Materials
, Vol.
24
, pp.
550
563
.
11.
Li
W.
, and
Davis
E. J.
,
1995
, “
The Effects of Gas and Particle Properties on Thermophoresis
,”
J. Aerosol Sci.
, Vol.
26
, No.
7
, p.
1085
1085
.
12.
Mandorf, V., 1967, “Preparation of Aluminum Nitride,” U.S. Patent No. 3,307,908.
13.
Mohammed, A. A., and Corbett, S. J., 1985, “Thick Film Metallization and Performance of a Power Hybrid Module on Aluminum Nitride Substrates,” in Proceedings of the 1985 International Symposium on Microelectronics, Nov. 11–14, pp. 218–224.
14.
Mori
S.
,
Yamamoto
A.
,
Iwata
S.
,
Haruta
T.
,
Yamada
I.
, and
Mizutani
E.
,
1990
, “
Vibro-Fluidization of Group-C Particles and its Industrial Applications
,” in
AIChE Symp. Ser.
, Vol.
86
, No.
276
, pp.
88
94
.
15.
Mujumdar, A. S., 1980, Drying ’80 Volume 1: Developments in Drying, Hemisphere, Washington.
16.
Mujumdar
A. S.
, and
Pakowski
Z.
,
1983
, “
Effect of Vibration on Immersed Surface Heat Transfer in a Fluidized Bed
,” in
Proc. ASME-JSME Therm. Eng. Jt. Cong.
, Vol.
1
, pp.
379
385
.
17.
Murray, J. P., and Steinfeld, A., 1994, “Solar Thermal Production of Nitrides by Carbothermal Reduction of Metal Oxides in a Nitrogen Atmosphere,” in Proc. ASME Int. Solar Energy Conf., San Francisco, USA, pp. 59–66.
18.
Murray
J. P.
,
Steinfeld
A.
, and
Fletcher
E. A.
,
1995
, “
Metals, Nitrides, and Carbides via Solar Carbothermal Reduction of Metal Oxides
,”
Energy Int. J.
, Vol.
20
, pp.
695
704
.
19.
Pitts
J. R.
,
Tracy
E.
,
Shinton
Y.
, and
Fields
C. L.
,
1993
, “
Application of Solar Energy to Surface Modification Processes
,”
Critical Reviews in Surface Chemistry
, Vol.
2
, No.
4
, p.
247
247
.
20.
Pratsinis
S. E.
, and
Kim
K. S.
,
1989
, “
Particle Coagulation, Diffusion, and Thermophoresis in Laminar Tube Flows
,”
J. Aerosol Sci.
, Vol.
20
, No.
1
, p.
101
101
.
21.
Slack
G. A.
,
Tanzilli
R. A.
,
Pohl
R. O.
, and
Vandersande
J. W.
,
1987
, “
The Intrinsic Thermal Conductivity of AIN
,”
J. Phys. Chem. Solids
, Vol.
48
, No.
7
, p.
641
641
.
22.
Steinfeld
A.
, and
Fletcher
E. A.
,
1991
, “
Theoretical and Experimental Investigation of the Carbothermal Reduction of Fe2O3 Using Solar Energy
,”
Energy Int. J.
, Vol.
16
, pp.
101
109
.
23.
Talbot
L.
,
Cheng
R. K.
,
Schafer
R. W.
, and
Willis
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
, Vol.
101
, p.
737
737
.
24.
Vogdes, C., 1998, “Predicting the Performance of Thermal Interface Materials,” Advanced Packaging, November/December, pp. 46–50.
25.
Walker
K. L.
,
Homsy
G. M.
, and
Geyling
F. T.
,
1979
, “
Thermophorctic Deposition of Small Particles in Laminar Tube Flow
,”
J. Colloid Interface Sci.
, Vol.
69
, No.
1
, p.
138
138
.
26.
Weimer
A. W.
,
Cochran
G. A.
,
Eisman
G. A.
,
Henley
J. P.
,
Hook
B. D.
,
Mills
L. K.
,
Guiton
T. A.
,
Knudsen
A. K.
,
Nocholas
N. R.
,
Volmering
J. E.
, and
Moore
W. G.
,
1994
, “
Rapid Process for Manufacturing Aluminum Nitride Powder
,”
J. Amer. Ceram. Soc
, Vol.
77
, No.
1
, p.
3
3
.
27.
Weimer
A. W.
,
Cochran
G. A.
,
Eisman
G. A.
,
Henley
J. P.
,
Guiton
T. A.
,
Knudsen
A. K.
, and
Nicholas
N. R.
,
1993
, “
Controlling Thermophoresis in the Exothermic Nitridation of an Aluminum Aerosol
,”
Aerosol Science and Technology
, Vol.
19
, p.
491
491
.
This content is only available via PDF.
You do not currently have access to this content.