Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Conference Series
Subject Area
Topics
Date
Availability
1-9 of 9
Deepak Marla
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. December 2020, 8(4): 041006.
Paper No: JMNM-20-1040
Published Online: January 18, 2021
Abstract
Recent investigations on the fabrication of ultrathin silicon (Si) wafers using wire-electric discharge machining (wire-EDM) were observed to possess some inherent limitations. These include thermal damage (TD), kerf-loss (KL), and low slicing rate (SR), which constraints its industrial use. The extent of TD, KL, and SR largely depends on the process parameters such as open voltage (OV), servovoltage (SV), and pulse on-time (T on ). Therefore, optimizing the parameters that pertain to minimum TD and KL while maintaining a higher SR is the key to improvement in the fabrication of Si wafers using wire-EDM. Thus, this study is an effort to analyze and identify the optimal parameters that relate to the most effective Si slicing in wire-EDM. A central composite design (CCD)-based response surface methodology (RSM) was used for optimizing the process parameters. The capability to slice Si wafers in wire-EDM was observed to be influenced by the discharge energy, which significantly impacted the overall responses. The severities of TDs were observed to be mainly dominated by the variation in OV and T on due to the diffusion of thermal energy into the workpiece, leading to melting and subsequent resolidification. For high productivity, the optimized parameters resulted in a SR of 0.72 mm/min, TD of 17.44 μ m, and a kerf-loss of about 280 μ m.
Proceedings Papers
Proc. ASME. MSEC2020, Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability, V002T08A021, September 3, 2020
Paper No: MSEC2020-8489
Abstract
Recent investigations on the fabrication of ultra-thin silicon (Si) wafers using wire-electrical discharge machining (wire-EDM) were observed to possess some inherent limitations. This includes severe thermal damage, kerf-loss, and low slicing rate, which could be detrimental towards realizing actual practical applications. The extent of thermal damage, kerf-loss, and slicing rate largely depends on the process parameters such as open voltage (OV), servo voltage (SV), and pulse on-time (T on ). Therefore, choosing the optimal parameters that pertain to minimum thermal damage and kerf-loss while maintaining a higher slicing rate is the key to further excel in the fabrication of Si wafers using wire-EDM. Therefore, the present study is an effort to analyze and identify the optimal parameters that relate to the most effective Si slicing in wire-EDM. A central composite design (CCD) based response surface methodology (RSM) was used for optimizing the process parameters. The capability to slice Si wafers in wire-EDM was observed to be highly influenced by the discharge energy, which had a positive impact on the overall responses. The severity of thermal damages was observed to be mainly dominated by the variation in open voltage and T on due to the high diffusion of thermal energy into the workpiece, which led to intense melting and subsequent re-solidification. The parametric optimization resulted in OV = 84.32 V, SV = 42.98 V and T on = 0.62 μs as the most feasible parameter that relates to comparatively high slicing rate (0.65 mm/min), low kerf-loss (280 μm) and thermal damage (18 μm) for a given machine. In general, with a decrease in spark energy slicing rate and thermal damage decreases whereas, kerf-loss increases. When spark energy decreases by 83%, there is a nearly 55% decrease in slicing rate and thermal damage and a 10% increase in kerf-loss.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. March 2020, 8(1): 010908.
Paper No: JMNM-19-1064
Published Online: February 13, 2020
Abstract
Electrical discharge machining of conducting ceramics is often associated with high roughness and porosity, which hinders their application. This porosity-laden surface morphology necessitates a postprocessing technique to reduce the severity of the surface defects. Hence, this study focuses on the utilization of a nanosecond pulsed laser as a surface modification tool to minimize the debris and pores formed on the surface after the wire-electrical discharge machining process. This paper presents a study on the influence of laser parameters, viz., power, number of scans, scanning speed, and pulse repetition rate on the overall surface characteristics. The concentration of surface debris and pores were observed to significantly decrease with laser surface modification (LSM). The improvement in the surface characteristics after laser processing with low fluence was mainly attributed to melting, vaporization, and subsequent flow of molten material, which led to filling of the surface pores. This resulted in a more even surface postlaser surface modification. The surface roughness was observed to decrease by ∼49% after the laser processing at lower values of laser power, number of scans, and scanning speed and at higher values of pulse repetition rate. Furthermore, spatial, hybrid, and functional volume characteristics were observed to improve postlaser modification. However, at higher laser fluence, the processed surfaces were observed to get further worsened with the formation of deep ridges.
Journal Articles
Article Type: Research-Article
J. Manuf. Sci. Eng. July 2017, 139(7): 071016.
Paper No: MANU-16-1456
Published Online: April 18, 2017
Abstract
In this study, a heat transfer model of machining of Ti–6Al–4V under the application of atomization-based cutting fluid (ACF) spray coolant is developed to predict the temperature of the cutting tool. Owing to high tool temperature involved in machining of Ti–6Al–4V, the model considers film boiling as the major heat transfer phenomenon. In addition, the design parameters of the spray for effective cooling during machining are derived based on droplet–surface interaction model. Machining experiments are conducted and the temperatures are recorded using the inserted thermocouple technique. The experimental data are compared with the model predictions. The temperature field obtained is comparable to the experimental results, confirming that the model predicts tool temperature during machining with ACF spray cooling satisfactorily.
Proceedings Papers
Proc. ASME. MSEC2016, Volume 1: Processing, V001T02A041, June 27–July 1, 2016
Paper No: MSEC2016-8595
Abstract
In this study a heat transfer model of machining of Ti-6Al-4V under the application of atomization-based cutting fluid spray coolant is developed to predict the temperature of the cutting tool. Owing to high tool temperature involved in machining of Ti-6Al-4V, the model considers film boiling as the major heat transfer phenomenon. In addition, the design parameters of the spray for effective cooling during machining are derived based on droplet-surface interaction model. Machining experiments are conducted and the temperatures are recorded using the inserted thermocouple technique. The experimental data are compared with the model predictions. The temperature field obtained is comparable to the experimental results, confirming that the model predicts tool temperature during machining with ACF spray cooling satisfactorily.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. September 2016, 4(3): 031002.
Paper No: JMNM-15-1076
Published Online: June 30, 2016
Abstract
A computational model to investigate the flushing of electric discharge machining (EDM) debris from the interelectrode gap during the spray-EDM process is developed. Spray-EDM differs from conventional EDM in that an atomized dielectric spray is used to generate a thin film that penetrates the interelectrode gap. The debris flushing in spray-EDM is investigated by developing models for three processes, viz., dielectric spray formation, film formation, and debris flushing. The range of spray system parameters including gas pressure and impingement angle that ensure formation of dielectric film on the surface is identified followed by the determination of dielectric film thickness and velocity. The debris flushing in conventional EDM with stationary dielectric and spray-EDM processes is then compared. It is observed that the dielectric film thickness and velocity play a significant role in removing the debris particles from the machining region. The model is used to determine the spray conditions that result in enhanced debris flushing with spray-EDM.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. December 2015, 3(4): 041008.
Paper No: JMNM-15-1037
Published Online: October 12, 2015
Abstract
A novel method of using atomized dielectric spray in micro-electric discharge machining (EDM) (spray-EDM) to reduce the consumption of dielectric is developed in this study. The atomized dielectric droplets form a moving dielectric film up on impinging the work surface that penetrates the interelectrode gap and acts as a single phase dielectric medium between the electrodes and also effectively removes the debris particles from the discharge zone. Single-discharge micro-EDM experiments are performed using three different dielectric supply methods, viz., conventional wet-EDM (electrodes submerged in dielectric medium), dry-EDM, and spray-EDM in order to compare the processes based on material removal, tool electrode wear, and flushing of debris from the interelectrode gap across a range of discharge energies. It is observed that spray-EDM produces higher material removal compared to the other two methods for all combinations of discharge parameters used in the study. The tool electrode wear using atomized dielectric is significantly better than dry-EDM and comparable to that observed in wet-EDM. The percentage of debris particles deposited within a distance of 100 μ m from the center of EDM crater is also significantly reduced using the spray-EDM technique.
Proceedings Papers
Proc. ASME. MSEC2015, Volume 1: Processing, V001T02A048, June 8–12, 2015
Paper No: MSEC2015-9348
Abstract
A novel method of using atomized dielectric spray in EDM to reduce the consumption of dielectric is developed in this study. The atomized dielectric droplets form a moving dielectric film up on impinging the work surface that penetrates the inter-electrode gap and acts as a single phase dielectric medium between the electrodes and also effectively removes the debris particles from the discharge zone. EDM experiments are performed using three different dielectric supply methods, viz., conventional wet-EDM (electrodes submerged in dielectric medium), dry-EDM and spray-EDM in order to compare the processes based on material removal, tool electrode wear and flushing of debris from the inter-electrode gap across a range of discharge energies. It is observed that spray-EDM produces higher material removal compared to the other two methods for all combinations of discharge parameters used in the study. The tool electrode wear using atomized dielectric is significantly better than dry-EDM and comparable to that observed in conventional wet-EDM. The percentage of debris particles deposited within a distance of 100 μm from the center of EDM crater is also significantly reduced using the atomized dielectric spray EDM technique.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2013, 1(1): 011007.
Paper No: JMNM-12-1014
Published Online: March 22, 2013
Abstract
This paper presents a comprehensive transient model of various phenomena that occur during laser ablation of TiC target at subnanosecond time-steps. The model is a 1D numerical simulation using finite volume method (FVM) on a target that is divided into subnanometric layers. The phenomena considered in the model include: plasma initiation, uniform plasma expansion, plasma shielding of incoming radiation, and temperature dependent material properties. It is observed that, during the target heating, phase transformations of any layer occur within a few picoseconds, which is significantly lower than the time taken for it to reach boiling point (~ns). The instantaneous width of the phase transformation zones is observed to be negligibly small (<5nm). In addition, the width of the melt zone remains constant once ablation begins. The melt width decreases with an increase in fluence and increases with an increase in pulse duration. On the contrary, the trend in the ablation depth is exactly opposite. The plasma absorbs about 25–50% of the incoming laser radiation at high fluences (20-40 J/cm2), and less than 5% in the range of 5-10 J/cm2. The simulated results of ablation depth on TiC are in good agreement at lower fluences. At moderate laser fluences (10-25 J/cm2), the discrepancy of the error increases to nearly ±7%. Under prediction of ablation depth by 15% at high fluences of 40 J/cm2 suggests the possibility of involvement of other mechanisms of removal such as melt expulsion and phase explosion at very high fluences.