Abstract

Tremendous efforts have been made to use computational and simulation models of additive manufacturing (AM) processes. The goals of these efforts are to better understand process complexities and to realize better high-quality parts. However, understanding whether any model is a correct representation for a given scenario is a difficult proposition. For example, when using metal powders, the laser powder-bed fusion (L-PBF) process involves complex physical phenomena such as powder morphology, heat transfer, phase transformation, and fluid flow. Models based on these phenomena will possess different degrees of fidelity since they often rely on assumptions that may neglect or simplify process physics, resulting in uncertainties in their prediction accuracy. Prediction accuracy and its characterization can vary greatly between models due to their uncertainties. This paper characterizes several sources of L-PBF model uncertainty for low, medium, and high-fidelity thermal models including modeling assumptions (model-form uncertainty), numerical approximations (numerical uncertainty), and input parameters (parameter uncertainty). This paper focuses on the input uncertainty sources, which we model in terms of a probability density function (PDF), and its propagation through all other L-PBF models. We represent uncertainty sources using the webontologylanguage, which allows us to capture the relevant knowledge used for interoperability and reusability. The topology and mapping of the uncertainty sources establish fundamental requirements for measuring model fidelity and for guiding the selection of a model suitable for its intended purpose.

References

1.
Ian
,
G.
,
David
,
R.
, and
Brent
,
S.
,
2013
,
Additive Manufacturing Technologies
,
Springer
, Berlin.
2.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jordá Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramón Blasco Puchades
,
J.
, and
Portolés Griñan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.10.1080/00207540903479786
3.
Prashanth
,
K. G.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2017
, “
Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting
,”
Acta Mater.
,
126
, pp.
25
35
.10.1016/j.actamat.2016.12.044
4.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,”
Rapid Prototyping J.
,
5
(
4
), pp.
169
178
.
5.
Assouroko
,
I.
,
Lopez
,
F.
, and
Witherell
,
P.
,
2016
, “
A Method for Characterizing Model Fidelity in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME
Paper No. IMECE2016-67220.
10.1115/IMECE2016-67220
6.
Smith
,
J.
,
Xiong
,
W.
,
Yan
,
W.
,
Lin
,
S.
,
Cheng
,
P.
,
Kafka
,
O. L.
,
Wagner
,
G. J.
,
Cao
,
J.
, and
Liu
,
W. K.
,
2016
, “
Linking Process, Structure, Property, and Performance for Metal-Based Additive Manufacturing: Computational Approaches With Experimental Support
,”
Comput. Mech.
,
57
(
4
), pp.
583
610
.10.1007/s00466-015-1240-4
7.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.10.1016/j.pmatsci.2017.10.001
8.
Moges
,
T.
,
Yan
,
W.
,
Lin
,
S.
,
Ameta
,
G.
,
Fox
,
J.
, and
Witherell
,
P.
,
2018
, “
Quantifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models and Simulations
,”
Solid Freeform Fabrication Symposium
, pp.
1913
1928
.
9.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.10.1115/1.4034103
10.
Moges
,
T.
,
Witherell
,
P.
, and
Ameta
,
G.
,
2019
, “
On Characterizing Uncertainty Sources in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME
Paper No. IMECE2019-11727.10.1115/IMECE2019-11727
11.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
040801
.10.1115/1.4042789
12.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
13.
Wilkinson
,
M. D.
,
Dumontier
,
M.
,
Aalbersberg
,
I. J.
,
Appleton
,
G.
,
Axton
,
M.
,
Baak
,
A.
,
Blomberg
,
N.
,
Boiten
,
J. W.
,
da Silva Santos
,
L. B.
,
Bourne
,
P. E.
,
Bouwman
,
J.
,
Brookes
,
A. J.
,
Clark
,
T.
,
Crosas
,
M.
,
Dillo
,
I.
,
Dumon
,
O.
,
Edmunds
,
S.
,
Evelo
,
C. T.
,
Finkers
,
R.
,
Gonzalez-Beltran
,
A.
,
Gray
,
A. J. G.
,
Groth
,
P.
,
Goble
,
C.
,
Grethe
,
J. S.
,
Heringa
,
J.
, ‘
t Hoen
,
P. A. C.
,
Hooft
,
R.
,
Kuhn
,
T.
,
Kok
,
R.
,
Kok
,
J.
,
Lusher
,
S. J.
,
Martone
,
M. E.
,
Mons
,
A.
,
Packer
,
A. L.
,
Persson
,
B.
,
Rocca-Serra
,
P.
,
Roos
,
M.
,
van Schaik
,
R.
,
Sansone
,
S. A.
,
Schultes
,
E.
,
Sengstag
,
T.
,
Slater
,
T.
,
Strawn
,
G.
,
Swertz
,
M. A.
,
Thompson
,
M.
,
Van Der Lei
,
J.
,
Van Mulligen
,
E.
,
Velterop
,
J.
,
Waagmeester
,
A.
,
Wittenburg
,
P.
,
Wolstencroft
,
K.
,
Zhao
,
J.
, and
Mons
,
B.
,
2016
, “
The FAIR Guiding Principles for Scientific Data Management and Stewardship
,”
Sci. Data
,
3
(
1
), p.
160018
.10.1038/sdata.2016.18
14.
Energetics Incorporated
,
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” Energetics Incorporated.
15.
Gholaminezhad
,
I.
,
Assimi
,
H.
,
Jamali
,
A.
, and
Vajari
,
D. A.
,
2016
, “
Uncertainty Quantification and Robust Modeling of Selective Laser Melting Process Using Stochastic Multi-Objective Approach
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1425
1441
.10.1007/s00170-015-8238-0
16.
Adamczak
,
S.
,
Bochnia
,
J.
, and
Kaczmarska
,
B.
,
2014
, “
Estimating the Uncertainty of Tensile Strength Measurement for a Photocured Material Produced by Additive Manufacturing
,”
Metrol. Meas. Syst.
,
21
(
3
), pp.
553
560
.10.2478/mms-2014-0047
17.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. ASME
, pp.
849
866
.
18.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.10.1063/1.4937809
19.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
20.
Moser
,
D.
,
Beaman
,
J.
,
Fish
,
S.
, and
Murthy
,
J.
,
2014
, “
Multi-Layer Computational Modeling of Selective Laser Sintering Processes
,”
ASME
Paper No. IMECE2014-37535.10.1115/IMECE2014-37535
21.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
Solid Freeform Fabrication Symposium
, pp.
219
228
.
22.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Multi-Level Uncertainty Quantification in Additive Manufacturing
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium
, pp.
922
937
.http://utw10945.utweb.utexas.edu/sites/default/files/2017/Manuscripts/MultiLevelUncertaintyQuantificationinAdditive.pdf
23.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1659
1677
.10.1007/s00170-015-8289-2
24.
Tapia
,
G.
,
King
,
W. E.
,
Arroyave
,
R.
,
Johnson
,
L.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
.10.1115/1.4041179
25.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316 L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
.10.1007/s00170-017-1045-z
26.
Yang
,
Z.
,
Eddy
,
D.
,
Krishnamurty
,
S.
,
Grosse
,
I.
,
Denno
,
P.
, and
Lopez
,
F.
,
2016
, “
Investigating Predictive Metamodeling for Additive Manufacturing
,”
ASME
Paper No. DETC2016-60506.10.1115/DETC2016-60506
27.
Yang
,
Z.
,
Yan
,
L.
,
Yeung
,
H.
, and
Krishnamurty
,
S.
,
2019
, “
Investigation of Deep Learning for Real-Time Melt Pool Classification in Additive Manufacturing
,”
Proceedings of the 2019 IEEE International Conference on Automation Science and Engineering
(
CASE
),
Vancouver, BC, Canada
, Aug.
22
26
.10.1109/COASE.2019.8843291
28.
Ko
,
H.
,
Lu
,
Y.
,
Witherell
,
P.
, and
Ndiaye
,
N. Y.
,
2019
, “
Machine Learning Based Continuous Knowledge Engineering for Additive Manufacturing
,” 2019 IEEE 15th International Conference on Automation Science and Engineering (
CASE
),
Vancouver, BC, Canada
, Aug.
22
26
.10.1109/COASE.2019.8843316
29.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2020
, “
Hybrid Modeling Approach for Melt Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME
Paper No. DETC2020-22615.10.1115/DETC2020-22615
30.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.10.1115/1.4050044
31.
Razvi
,
S. S.
,
Feng
,
S.
,
Narayanan
,
A.
,
Lee
,
Y. T.
, and
Witherell
,
P.
,
2019
, “
A Review of Machine Learning Applications in Additive Manufacturing
,”
ASME
Paper No. DETC2019-98415.10.1115/DETC2019-98415
32.
Wang
,
Z.
,
Liu
,
P.
,
Xiao
,
Y.
,
Cui
,
X.
,
Hu
,
Z.
, and
Chen
,
L.
,
2019
, “
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under Uncertainty
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081004
.10.1115/1.4043798
33.
Wang
,
X.
, and
Xiong
,
W.
,
2020
, “
Uncertainty Quantification and Composition Optimization for Alloy Additive Manufacturing Through a CALPHAD-Based ICME Framework
,”
npj Comput. Mater.
,
6
(
1
), p.
188
.10.1038/s41524-020-00454-9
34.
Wang
,
Z.
,
Jiang
,
C.
,
Liu
,
P.
,
Yang
,
W.
,
Zhao
,
Y.
,
Horstemeyer
,
M. F.
,
Chen
,
L. Q.
,
Hu
,
Z.
, and
Chen
,
L.
,
2020
, “
Uncertainty Quantification and Reduction in Metal Additive Manufacturing
,”
npj Comput. Mater.
,
6
(
1
), p.
175
.10.1038/s41524-020-00444-x
35.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
36.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Integr. Mater. Manuf. Innovation
,
7
(
3
), pp.
116
135
.10.1007/s40192-018-0113-z
37.
Ghosh
,
S.
,
Mahmoudi
,
M.
,
Johnson
,
L.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Allaire
,
D.
,
2019
, “
Uncertainty Analysis of Microsegregation During Laser Powder Bed Fusion
,”
Model. Simul. Mater. Sci. Eng.
,
27
(
3
), p.
034002
.10.1088/1361-651X/ab01bf
38.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B. E.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
796
814
.
39.
Eagar
,
T. W.
, and
Tsai
,
N. S.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
40.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
231
(
1
), pp.
96
117
.10.1177/0954405414567522
41.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.10.1016/j.ijmachtools.2009.07.004
42.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.10.1016/j.actamat.2017.05.061
43.
Lee
,
Y. S.
, and
Zhang
,
W.
,
2016
, “
Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
12
, pp.
178
188
.
44.
Mukherjee
,
T.
,
Wei
,
H. L.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing—Part I: Modeling of Powder Bed Fusion
,”
Comput. Mater. Sci.
,
150
, pp.
304
313
.10.1016/j.commatsci.2018.04.022
45.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
,
Wolff
,
S.
,
Wu
,
H.
,
Ndip-Agbor
,
E.
,
Mozaffar
,
M.
,
Ehmann
,
K.
,
Cao
,
J.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.10.1007/s00466-018-1539-z
46.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
47.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Standard No. ASME V&V 20.
48.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.10.1016/j.jcp.2004.10.036
49.
ASME
,
2005
, “
Guide for Verification and Validation in Computational Solid Mechanics
,” The American Society of Mechanical Engineers, New York, Standard No. PTC 60/ASME V&V 10.
50.
Roache
,
P.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
4
10
.10.1115/1.1436090
51.
Riley
,
M.
, and
Grandhi
,
R.
,
2011
, “
A Method for the Quantification of Model-Form and Parametric Uncertainties in Physics-Based Simulations
,”
AIAA
Paper No. 2011-1765.10.2514/6.2011-1765
52.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
1998
, “
Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization
,”
AIAA
Paper No. 98-4755.10.2514/6.1998-4755
53.
Cressie
,
N.
,
2015
,
Statistics for Spatial Data
,
Wiley
, Hoboken, NJ.
54.
Simpson
,
T. W.
,
Booker
,
A. J.
,
Ghosh
,
D.
,
Giunta
,
A. A.
,
Koch
,
P. N.
, and
Yang
,
R.
,
2004
, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion
,”
Struct. Multidiscip. Optim.
,
27
(
5
), pp.
302
313
.
55.
Sacks
,
J.
,
Welch
,
W.
,
Mitchell
,
T.
, and
Wynn
,
H.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
56.
Mahesh
,
M.
,
Lane
,
B.
,
Donmez
,
A.
,
Feng
,
S.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 8036, pp.
1
50
.
57.
JCGM
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,”
Int. Organ. Stand. Geneva ISBN
,
50
, p.
134
.
58.
Devesse
,
W.
,
De Baere
,
D.
, and
Guillaume
,
P.
,
2014
, “
The Isotherm Migration Method in Spherical Coordinates With a Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
75
, pp.
726
735
.10.1016/j.ijheatmasstransfer.2014.04.015
59.
Moges
,
T.
,
Yan
,
W.
,
Lin
,
S.
,
Ameta
,
G.
,
Fox
,
J.
, and
Witherell
,
P.
,
2020
, “
Quantifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models and Simulations
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference (SFF 2018)
.
60.
Capriccioli
,
A.
, and
Frosi
,
P.
,
2009
, “
Multipurpose ANSYS FE Procedure for Welding Processes Simulation
,”
Fusion Eng. Des.
,
84
(
2–6
), pp.
546
553
.10.1016/j.fusengdes.2009.01.039
61.
Special Metals Corp
.,
2013
, “
Inconel Alloy 625
,” Special Metals, accessed Sept. 3, 2021, www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pdf
62.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid
(Series on Computational Methods in Mechanics and Thermal Science),
Hemisphere Publishing Corporation (CRC Press, Taylor & Francis Group)
, Boca Raton, FL.
63.
Pawel
,
R. E.
, and
Williams
,
R. K.
,
1985
, “
Survey of Physical Property Data for Several Alloys
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-9616.
64.
Fox
,
J. C.
,
Lane
,
B. M.
, and
Yeung
,
H.
,
2017
, “
Measurement of Process Dynamics Through Coaxially Aligned High Speed Near-Infrared Imaging in Laser Powder Bed Fusion Additive Manufacturing
,”
Proc. SPIE
,
10214
, p.
1021407
.10.1117/12.2263863
65.
Kim
,
S.
,
Rosen
,
D. W.
,
Witherell
,
P.
, and
Ko
,
H.
,
2018
, “
A Design for Additive Manufacturing Ontology to Support Manufacturability Analysis
,”
ASME
Paper No. DETC2018-85848.10.1115/DETC2018-85848
66.
Roh
,
B.
,
Kumara
,
S. R. T.
,
Simpson
,
T. W.
, and
Witherell
,
P.
,
2016
, “
Ontology-Based Laser and Thermal Metamodels for Metal-Based Additive Manufacturing
,”
ASME
Paper No. DETC2016-60233.10.1115/DETC2016-60233
67.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z.-K.
,
Chen
,
L.-Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061025
.10.1115/1.4028533
You do not currently have access to this content.