Abstract

The growing demand for clean renewable energy sources and the lack of suitable nearshore sites are moving the offshore wind industry toward developing larger wind turbines in deeper water locations further offshore. This is adding significant uncertainty to the geotechnical design of monopiles used as foundations for these systems. Soil testing becomes more challenging, rigid monopile behavior is less certain, and design methods are being applied outside the bounds of the datasets from which they were originally derived. This paper examines the potential impact of certain elements of geotechnical uncertainty on monotonic load–displacement behavior and design system natural frequency of an example monopile-supported offshore wind turbine (OWT). Geotechnical uncertainty is considered in terms of spatial variability in soil properties derived from cone penetration tests (CPT), parameter transformation uncertainty using the rigidity index, and design choice for subgrade reaction modeling. Results suggest that spatial variability in CPT properties exhibits limited impact on design load–displacement characteristics of monopiles as vertical spatial variability tends to be averaged out in the process to develop discrete soil reaction-lateral displacement (p-y) models. This highlights a potential issue whereby localized variations in soil properties may not be captured in certain models. Spatial variability in CPT data has a noticeable effect on predicted system frequency responses of OWTs employing a subgrade reaction model approach, and the influence of subgrade reaction model choice is significant. The purpose of this paper is to investigate the effect of uncertainty in soil data, model transformation, and design model choice on resulting structural behavior for a subset of available design approaches. It should be noted that significant further uncertainty exists and a wide variety of alternative models can be used by designers, so the results should be interpreted qualitatively.

References

1.
EU,
2019
,
The European Green Deal
,
EU
,
Belgium
.
2.
Wind Europe,
2018
, “
Offshore Wind in Europe—Key Trends and Statistics
,”
Wind Europe
,
Brussels, Belgium
.
3.
IEA
,
2019
,
Offshore Wind Outlook 2019
,
International Energy Agency, Special Report
,
Paris, France
.
4.
UK Government
,
2019
,
UK Policy Paper: Offshore Wind Sector Deal
,
Gov.uk
,
London, UK
.
5.
Chortis
,
G.
,
Askarinejad
,
A.
,
Prendergast
,
L. J.
,
Li
,
Q.
, and
Gavin
,
K.
,
2020
, “
Influence of Scour Depth and Type on p–y Curves for Monopiles in Sand Under Monotonic Lateral Loading in a Geotechnical Centrifuge
,”
Ocean. Eng.
,
197
, p.
106838
.10.1016/j.oceaneng.2019.106838
6.
LeBlanc
,
C.
,
Houlsby
,
G. T.
, and
Byrne
,
B. W.
,
2010
, “
Response of Stiff Piles in Sand to Long-Term Cyclic Lateral Loading
,”
Géotechnique
,
60
(
2
), pp.
79
90
.10.1680/geot.7.00196
7.
Doherty
,
P.
, and
Gavin
,
K.
,
2012
, “
Laterally Loaded Monopile Design for Offshore Wind Farms
,”
Proc. ICE Energy
,
165
(
1
), pp.
7
17
.10.1115/1.4051418
8.
Kampitsis
,
A. E.
,
Sapountzakis
,
E. J.
,
Giannakos
,
S. K.
, and
Gerolymos
,
N. A.
,
2013
, “
Gerolymos N a. Seismic Soil–Pile–Structure Kinematic and Inertial Interaction—A New Beam Approach
,”
Soil Dyn. Earthq. Eng.
,
55
, pp.
211
224
.10.1016/j.soildyn.2013.09.023
9.
Yankelevsky
,
D. Z.
,
Eisenberger
,
M.
, and
Adin
,
M. A.
,
1989
, “
Analysis of Beams on Nonlinear Winkler Foundation
,”
Comput Struct.
,
31
(
2
), pp.
287
292
.10.1016/0045-7949(89)90232-0
10.
Winkler
,
E.
,
1867
,
Theory of Elasticity and Strength
,
Dominicus
,
Prague
.
11.
Dutta
,
S. C.
, and
Roy
,
R.
, “
A Critical Review on Idealization and Modeling for Interaction Among Soil–Foundation–Structure System
,”
Comput. Struct.
,
2002
,
80
(
20–21
), pp.
1579
1594
.10.1016/S0045-7949(02)00115-3
12.
Burd
,
H. J.
,
Byrne
,
B. W.
,
McAdam
,
R. A.
,
Houlsby
,
G. T.
,
Martin
,
C. M.
, and
Jap Beuckelaers
,
W.
,
2017
, “
Design Aspects for Monopile Foundations
,”
TC 209 Workshop Foundation Design Offshore Wind Structure ICSMGE
, Seoul, Korea, Sept. 20, pp.
35
44
.https://www.researchgate.net/publication/319991537_Design_aspects_for_monopile_foundations
13.
Byrne
,
B. W.
,
Burd
,
H. J.
,
Gavin
,
K. G.
,
Houlsby
,
G. T.
,
Jardine
,
R. J.
,
McAdam
,
R. A.
,
Martin
,
C. M.
,
Potts
,
D. M.
,
Taborda
,
D. M. G.
, and
Zdravkovic
,
L.
,
2019
, PISA: Recent Developments in Offshore Wind Turbine Monopile Design., In: Randolph M., Doan D., Tang A., Bui M., Dinh V. (eds)
Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering.
VSOE 2018. Lecture Notes in Civil Engineering, Vol. 18. Springer, Singapore, pp.
350
355
.10.1007/978-981-13-2306-5_48
14.
Zdravković
,
L.
,
Jardine
,
R. J.
,
Taborda
,
D. M. G.
,
Abadias
,
D.
,
Burd
,
H. J.
,
Byrne
,
B. W.
,
Gavin
,
K. G.
,
Houlsby
,
G. T.
,
Igoe
,
D. J. P.
,
Liu
,
T.
,
Martin
,
C. M.
,
McAdam
,
R. A.
,
Muir Wood
,
A.
,
Potts
,
D. M.
,
Skov Gretlund
,
J.
, and
Ushev
,
E.
,
2020
, “
Ground Characterisation for PISA Pile Testing and Analysis
,”
Géotechnique
,
70
(
11
), pp.
945
960
.10.1680/jgeot.18.PISA.001
15.
Xue
,
J.
,
Gavin
,
K.
,
Murphy
,
G.
,
Doherty
,
P.
, and
Igoe
,
D.
, “
Optimization Technique to Determine the p-y Curves of Laterally Loaded Stiff Piles in Dense Sand
,”
Geotech. Test J.
,
2016
,
39
(
5
), p.
20140257
.10.1520/GTJ20140257
16.
Arany
,
L.
,
Bhattacharya
,
S.
,
Macdonald
,
J.
, and
Hogan
,
S. J.
,
2017
, “
Design of Monopiles for Offshore Wind Turbines in 10 Steps
,”
Soil Dyn. Earthq. Eng.
,
92
, pp.
126
152
.10.1016/j.soildyn.2016.09.024
17.
O'Neill
,
M.
, and
Murchinson
,
J. M.
,
1983
,
An Evaluation p-y Relationships Sands
, American Petroleum Institute, Houston, TX.
18.
API,
2007
, “
API RP2A-WSD Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms–Working Stress Design
,”
American Petroleum Institute
,
Washington, DC
.
19.
Det Norske Veritas,
2011
, “
DNV Offshore Standard DNV-OS-J101 Design of Offshore Wind Turbine Structures
,”
Baerum, Norway
.
20.
Reese
,
L. C.
, and
Matlock
,
H.
,
1956
, “
Non-Dimensional Solutions for Laterally Loaded Piles With Soil Modulus Assumed Proportional to Depth
,”
Proceedings of Eighth International Conference Soil Mechanics and Foundation Engineering
,
Austin, TX
, Sept. 14–15, pp.
1
41
.https://www.worldcat.org/title/nondimensional-solutions-for-laterally-loaded-piles-with-soil-modulus-assumed-proportional-todepth/oclc/20335826
21.
Prendergast
,
L. J.
,
Gavin
,
K.
, and
Doherty
,
P.
,
2015
, “
An Investigation Into the Effect of Scour on the Natural Frequency of an Offshore Wind Turbine
,”
Ocean Eng.
,
101
, pp.
1
11
.10.1016/j.oceaneng.2015.04.017
22.
Prendergast
,
L. J.
,
Reale
,
C.
, and
Gavin
,
K.
,
2018
, “
Probabilistic Examination of the Change in Eigenfrequencies of an Offshore Wind Turbine Under Progressive Scour Incorporating Soil Spatial Variability
,”
Mar. Struct.
,
57
, pp.
87
104
.
23.
Prendergast
,
L. J.
, and
Gavin
,
K.
,
2016
, “
A Comparison of Initial Stiffness Formulations for Small-Strain Soil – Pile Dynamic Winkler Modelling
,”
Soil Dyn. Earthq. Eng.
,
81
, pp.
27
41
.10.1016/j.soildyn.2015.11.006
24.
Prendergast
,
L. J.
,
Wu
,
W. H.
, and
Gavin
,
K.
,
2019
, “
Experimental Application of FRF-Based Model Updating Approach to Estimate Soil Mass and Stiffness Mobilised Under Pile Impact Tests
,”
Soil Dyn. Earthq. Eng.
,
123
, pp.
1
15
.10.1016/j.soildyn.2019.04.027
25.
Lunne
,
T.
,
Robertson
,
P. K.
, and
Powell
,
J. J. M.
,
1997
, “
Cone Penetration Testing in Geotechnical Practice
,”
Blackie Academic Professional
,
London, UK
.
26.
Mayne
,
P.
,
2014
, “
Interpretation of Geotechnical Parameters From Seismic Piezocone Tests
,”
Third International Symposium Cone Penetration Test
, Las Vegas, NV, May 12–14, pp.
47
73
.https://www.geoengineer.org/events/the-3rd-international-symposium-on-cone-penetrationtesting-cpt14
27.
Remmers
,
J.
,
Reale
,
C.
,
Pisanò
,
F.
,
Raymackers
,
S.
, and
Gavin
,
K.
,
2019
, “
Geotechnical Installation Design of Suction Buckets in Non-Cohesive Soils: A Reliability-Based Approach
,”
Ocean Eng.
,
188
, p.
106242
.10.1016/j.oceaneng.2019.106242
28.
Wu
,
W. H.
,
Prendergast
,
L. J.
, and
Gavin
,
K.
,
2018
, “
An Iterative Method to Infer Distributed Mass and Stiffness Profiles for Use in Reference Dynamic Beam-Winkler Models of Foundation Piles From Frequency Response Functions
,”
J. Sound Vib.
,
431
, pp.
1
19
.10.1016/j.jsv.2018.05.049
29.
Lacasse
,
S.
,
Nadim
,
F.
,
Andersen
,
K. H.
,
Knudsen
,
S.
,
Eidsvig
,
U. K.
,
Yetginer
,
G. L.
, Guttormsen, T., and Eide, A.,
2013
, “
Reliability of API, NGI, ICP and Fugro Axial Pile Capacity Calculation Methods
,”
Society of Petroleum Engineers (SPE)
, Houston, TX, May 6, Paper No. OTC-24063-MS.10.4043/24063-MS
30.
Schmoor
,
K. A.
,
Achmus
,
M.
,
Foglia
,
A.
, and
Wefer
,
M.
,
2018
, “
Reliability of Design Approaches for Axially Loaded Offshore Piles and Its Consequences With Respect to the North Sea
,”
J. Rock Mech. Geotech. Eng.
,
10
(
6
), pp.
1112
1121
.10.1016/j.jrmge.2018.06.004
31.
Baecher
,
G. B.
, and
Christian
,
J. T.
,
2005
,
Reliability and Statistics in Geotechnical Engineering
,
Wiley & Sons
, Chichester, UK.
32.
Reale
,
C.
,
Xue
,
J.
, and
Gavin
,
K.
,
2017
, “
Using Reliability Theory to Assess the Stability and Prolong the Design Life of Existing Engineered Slopes
,”
Geotechnical Special Publication
, presented at Geo-Risk 2017, Denver, CO, June 4–7. 10.1061/9780784480731.006
33.
Christian
,
J. T.
,
2004
, “
Geotechnical Engineering Reliability: How Well Do we Know What we Are Doing?
,”
J. Geotech. Geoenvironmen. Eng.
,
130
(
10
), pp.
985
1003
.10.1061/(ASCE)1090-0241(2004)130:10(985)
34.
Christian
,
J. T.
,
Ladd
,
C. C.
, and
Baecher
,
G. B.
,
1994
, “
Reliability Applied to Slope Stability Analysis
,”
J. Geotech. Eng.
,
120
(
12
), pp.
2180
2207
.10.1061/(ASCE)0733-9410(1994)120:12(2180)
35.
Phoon
,
K.
, and
Kulhawy
,
F.
,
1999
, “
Characterization of Geotechnical Variability
,”
Can. Geotech. J.
, ,
36
(
4
), pp.
612
624
.10.1139/t99-038
36.
Whitman
,
R.
,
2000
, “
Organizing and Evaluating Uncertainty in Geotechnical Engineering
,”
J. Geotech. Geoenvironmen. Eng.
,
126
(
7
), pp.
583
593
.10.1061/(ASCE)1090-0241(2000)126:7(583)
37.
Fenton
,
G.
, and
Vanmarcke
,
E.
,
1990
, “
Simulation of Random Fields Via Local Average Subdivision
,”
J. Eng. Mech.
,
116
(
8
), pp.
1733
1749
.
38.
Griffiths
,
D.
,
Huang
,
J.
, and
Fenton
,
G.
,
2009
, “
Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields
,”
J. Geotech. Geoenvironmen. Eng.
,
135
(
10
), pp.
1367
1378
.10.1061/(ASCE)GT.1943-5606.0000099
39.
Lloret-Cabot
,
M.
,
Fenton
,
G.
, and
Hicks
,
M.
,
2014
, “
On the Estimation of Scale of Fluctuation in Geostatistics
,”
Georisk Assess Manag. Risk Eng. Syst. Geohazards
,
8
(
2
), pp.
129
140
.10.1080/17499518.2013.871189
40.
Vanmarcke
,
E.
,
1977
, “
Probabilistic Modeling of Soil Profiles
,”
J. Geotech. Eng. Div.
,
103
(
11
), pp.
1227
1246
.10.1061/AJGEB6.0000517
41.
Teixeira
,
R.
,
O'Connor
,
A.
,
Nogal
,
M.
,
Krishnan
,
N.
, and
Nichols
,
J.
,
2017
Analysis of the Design of Experiments of Offshore Wind Turbine Fatigue Reliability Design With Kriging Surfaces
,”
Procedia Struct. Integr
,
5
, pp.
951
958
.10.1016/j.prostr.2017.07.132
42.
Robertson
,
P. K.
,
2009
, “
Interpretation of Cone Penetration Tests—a Unified Approach
,”
Can. Geotech. J.
,
46
(
11
), pp.
1337
1355
.10.1139/T09-065
43.
Schnaid
,
F.
,
Lehane
,
B. M.
, and
Fahey
,
M.
,
2004
, “
In Situ Test Characterisation of Unusual Geomaterials
,”
Proceedings of International Conference Site Characterisation
,
Porto, Portugal
, Jan. 1, pp.
49
73
.
44.
Prendergast
,
L. J.
,
Hester
,
D.
,
Gavin
,
K.
, and
O'Sullivan
,
J. J.
,
2013
, “
An Investigation of the Changes in the Natural Frequency of a Pile Affected by Scour
,”
J. Sound Vib.
,
332
(
25
), pp.
6685
6702
.10.1016/j.jsv.2013.08.020
45.
Biot
,
M. A.
,
1937
, “
Bending of an Infinite Beamon an Elastic Foundation
,”
ASME J. Appl. Mech.
,
4
(
1
), pp.
A1
A7
.10.1115/1.4008739
46.
Vesic
,
A. B.
,
1961
, “
Bending of Beams Resting on Isotropic Elastic Solid
,”
J. Soil Mech. Found Eng.
,
87
, pp.
35
53
.10.1061/JMCEA3.0000212
47.
Gazetas
,
G.
,
1984
, “
Seismic Response of End-Bearing Single Piles
,”
Int. J. Soil. Dyn. Earthq. Eng.
,
3
(
2
), pp.
82
93
.10.1016/0261-7277(84)90003-2
48.
Siemens
,
A. G.
,
2015
,
Wind Turbine SWT-3.6-120 Technical Specifications
,
Hamburg, Germany.
49.
The Wind Power,
2021
, “
Swt-3.6-120
,” The Wind Power, Tournefeuille, France, accessed May 15, https://wwwThewindpowerNet/Turbine_en_79_siemens_swt-36-120Php. https://www.thewindpower.net/turbine_en_79_siemens_swt-3.6-120.php
50.
ArchiExpo, 2021,
SWT-3.6-120 Technical Specifications. Siemens Gamesa 2021
,” ArchiExpo, accesed May 15, 2021, https://pdf.archiexpo.com/pdf/siemens-gamesa/swt-36-120/88089-134487.html
51.
Wind Turbine Models,
2020
, “
Siemens SWT-3.6-120 Offshore. Wind-Turbine-ModelsCom 2020
,” wind-turbine-models.com, accessed Sept. 7, https://en.wind-turbine-models.com/turbines/669-siemens-swt-3.6-120-offshore
52.
Peder Hyldal Sørensen
,
S.
, and
Bo Ibsen
,
L.
,
2013
, “
Assessment of Foundation Design for Offshore Monopiles Unprotected Against Scour
,”
Ocean. Eng.
,
63
, pp.
17
25
.10.1016/j.oceaneng.2013.01.016
53.
Corciulo
,
S.
,
2015
, “
Dynamic Hydro-Mechanical Analysis of Soil-Monopile Interaction in Offshore Wind Turbines
,”
Politecnico Di Milano
, Milan, Italy.
54.
Corciulo
,
S.
,
Zanoli
,
O.
, and
Pisano
,
F.
,
2017
, “
Transient Response of Offshore Wind Turbines on Monopiles in Sand: Role of Cyclic Hydro-Mechanical Soil Behaviour
,”
Comput. Geotech.
,
83
, pp.
221
238
.10.1016/j.compgeo.2016.11.010
55.
Kwon
,
Y. W.
, and
Bang
,
H.
,
2000
,
The Finite Element Method Using MATLAB
,
CRC Press
,
Boca Raton, FL
.
56.
Reese
,
L. C.
,
Cox
,
W. R.
, and
Koop
,
F. D.
,
1974
, “
Analysis of Laterally Loaded Piles in Sand
,”
Proceedings of Sixth Annual Offshore Technology Conference
,
Houston, TX
, May 5, Paper No. OTC-2080-MS.
57.
Cox
,
W. R.
,
Reese
,
L. C.
, and
Grubbs
,
B. R.
,
1974
, “
Field Testing of Laterally Loaded Piles in Sand
,”
Proceedings of Offshore Technology Conference
,
Houston, TX
, May 6–8, p.
4501
.
58.
Murchinson
,
J. R.
, and
O'Niell
,
M. W.
,
1984
, “
Evaluation of p-y Relationships in Cohesionless Soil
,” Analysis Design Pile Foundation,
San Francisco, CA
.
59.
Ashford
,
S. A.
, and
Juirnarongrit
,
T.
,
2003
, “
Evaluation of Pile Diameter Effect on Initial Modulus of Subgrade Reaction
,”
Geotech. Geoenvironmen. Eng.
,
129
(
3
), pp.
234
242
.10.1061/(ASCE)1090-0241(2003)129:3(234)
60.
Yang
,
K.
, and
Liang
,
R.
, “
Methods for Deriving p-y Curves From Instrumented Lateral Load Tests
,”
Geotech. Test J.
,
2007
,
30
(
1
), pp.
31
38
.10.1520/GTJ100317
61.
Suryasentana
,
S. K.
, and
Lehane
,
B. M.
, “
Numerical Derivation of CPT-Based p–y Curves for Piles in Sand
,”
Géotechnique
,
2014
,
64
(
3
), pp.
186
194
.10.1680/geot.13.P.026
62.
Suryasentana
,
S. K.
, and
Lehane
,
B. M.
,
2016
, “
Updated CPT-Based p – y Formulation for Laterally Loaded Piles in Cohesionless Soil Under Static Loading
,”
Géotechnique
,
66
(
6
), pp.
445
453
.10.1680/jgeot.14.P.156
63.
Dong
,
R. G.
,
1978
, “
Effective Mass and Damping of Submerged Structures
,”
University of California
,
Livermore, CA
.
You do not currently have access to this content.