Abstract

Quantifying effects of system-wide uncertainties (i.e., affecting structural, piezoelectric, and/or electrical components) in the analysis and design of piezoelectric vibration energy harvesters have recently been emphasized. The present investigation proposes first a general methodology to model these uncertainties within a finite element model of the harvester obtained from an existing finite element software. Needed from this software are the matrices relating to the structural properties (mass, stiffness), the piezoelectric capacitance matrix as well as the structural-piezoelectric coupling terms of the mean harvester. The thermal analogy linking piezoelectric and temperature effects is also extended to permit the use of finite element software that do not have piezoelectric elements but include thermal effects on structures. The approach is applied to a beam energy harvester. Both weak and strong coupling configurations are considered, and various scenarios of load resistance tuning are discussed, i.e., based on the mean model, for each harvester sample, or based on the entire set of harvesters. The uncertainty is shown to have significant effects in all cases even at a relatively low level, and these effects are dominated by the uncertainty on the structure versus the one on the piezoelectric component. The strongly coupled configuration is shown to be better as it is less sensitive to the uncertainty and its variability in power output can be significantly reduced by the adaptive optimization, and the harvested power can even be boosted if the target excitation frequency falls into the power saturation band of the system.

References

1.
Todaro
,
M. T.
,
Guido
,
F.
,
Mastronardi
,
V.
,
Desmaele
,
D.
,
Epifani
,
G.
,
Algieri
,
L.
, and
De Vittorio
,
M.
,
2017
, “
Piezoelectric MEMS Vibration Energy Harvesters: Advances and Outlook
,”
Microelectron. Eng.
,
183–184
, pp.
23
36
.10.1016/j.mee.2017.10.005
2.
Priya
,
S.
, and
Inman
,
D. J.
,
2009
,
Energy Harvesting Technologies
,
Springer
,
New York
.
3.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.10.1088/0957-0233/17/12/R01
4.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
205
.10.1177/0583102404043275
5.
Priya
,
S.
,
2007
, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
,
19
, pp.
165
182
.10.1007/s10832-007-9043-4
6.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.10.1088/0964-1726/16/3/R01
7.
Cook-Chennault
,
K. A.
,
Thambi
,
N.
, and
Sastry
,
A. M.
,
2008
, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
17
(
4
), p.
043001
.10.1088/0964-1726/17/4/043001
8.
Calio
,
R.
,
Rongala
,
U. B.
,
Camboni
,
D.
,
Milazzo
,
M.
,
Stefanini
,
C.
,
Petris
,
G.
, and
Oddo
,
C. M.
,
2014
, “
Piezoelectric Energy Harvesting Solutions
,”
Sensors
,
14
(
3
), pp.
4755
4790
.10.3390/s140304755
9.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
10.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
11.
Mann
,
B. P.
,
Barton
,
D. A. W.
, and
Owens
,
B. A. M.
,
2012
, “
Uncertainty in Performance for Linear and Nonlinear Energy Harvesting Strategies
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1451
1460
.10.1177/1045389X12439639
12.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2007
, “
Energy Harvesting Using Piezoelectric Materials: Case of Random Vibrations
,”
J. Electroceram.
,
19
(
4
), pp.
349
355
.10.1007/s10832-007-9051-4
13.
Halvorsen
,
E.
,
2008
, “
Energy Harvesters Driven by Broadband Random Vibrations
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1061
1071
.10.1109/JMEMS.2008.928709
14.
Adhikari
,
S.
,
Friswell
,
M.
, and
Inman
,
D. J.
,
2009
, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
(
11
), p.
115005
.10.1088/0964-1726/18/11/115005
15.
Seuaciuc-Osório
,
T.
, and
Daqaq
,
M. F.
,
2010
, “
Energy Harvesting Under Excitations of Time-Varying Frequency
,”
J. Sound Vib.
,
329
(
13
), pp.
2497
2515
.10.1016/j.jsv.2010.01.015
16.
Yoon
,
H.
, and
Youn
,
B. D.
,
2014
, “
Stochastic Quantification of the Electric Power Generated by a Piezoelectric Energy Harvester Using a Time–Frequency Analysis Under Non-Stationary Random Vibrations
,”
Smart Mater. Struct.
,
23
(
4
), p.
045035
.10.1088/0964-1726/23/4/045035
17.
Zhao
,
S.
, and
Erturk
,
A.
,
2013
, “
Electroelastic Modeling and Experimental Validations of Piezoelectric Energy Harvesting From Broadband Random Vibrations of Cantilevered Bimorphs
,”
Smart Mater. Struct.
,
22
(
1
), p.
015002
.10.1088/0964-1726/22/1/015002
18.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
19.
Li
,
Y.
,
Li
,
W.
,
Guo
,
T.
,
Yan
,
Z.
,
Fu
,
X.
, and
Hu
,
X.
,
2009
, “
Study on Structure Optimization of a Piezoelectric Cantilever With a Proof Mass for Vibration-Powered Energy Harvesting System
,”
J. Vac. Sci. Technol. B
,
27
(
3
), pp.
1288
1290
.10.1116/1.3119677
20.
Bourisli
,
R. I.
, and
Al-Ajmi
,
M. A.
,
2010
, “
Optimization of Smart Beams for Maximum Modal Electromechanical Coupling Using Genetic Algorithms
,”
J. Intell. Mater. Syst. Struct.
,
21
(
9
), pp.
907
914
.10.1177/1045389X10370544
21.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2010
, “
Beam Shape Optimization for Power Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
6
), pp.
633
646
.10.1177/1045389X10365094
22.
Paquin
,
S.
, and
St-Amant
,
Y.
,
2010
, “
Improving the Performance of a Piezoelectric Energy Harvester Using a Variable Thickness Beam
,”
Smart Mater. Struct.
,
19
(
10
), p.
105020
.10.1088/0964-1726/19/10/105020
23.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2005
, “
Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
865
876
.10.1177/1045389X05056859
24.
Liao
,
Y.
, and
Sodano
,
H. A.
,
2008
, “
Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation
,”
Smart Mater. Struct.
,
17
(
6
), p.
065026
.10.1088/0964-1726/17/6/065026
25.
Wickenheiser
,
A. M.
, and
Garcia
,
E.
,
2010
, “
Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits
,”
J. Intell. Mater. Syst. Struct.
,
21
(
13
), pp.
1343
1361
.10.1177/1045389X10376678
26.
Liao
,
Y.
, and
Sodano
,
H. A.
,
2018
, “
Optimal Power, Power Limit, and Damping of Vibration Based Power Harvesters
,”
Smart Mater. Struct.
,
27
(
7
), p.
075057
.10.1088/1361-665X/aabf4a
27.
Zheng
,
B.
,
Chang
,
C. J.
, and
Gea
,
H. C.
,
2009
, “
Topology Optimization of Energy Harvesting Devices Using Piezoelectric Materials
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
17
23
.10.1007/s00158-008-0265-0
28.
Rupp
,
C. J.
,
Evgrafov
,
A.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells
,”
J. Intell. Mater. Syst. Struct.
,
20
(
16
), pp.
1923
1939
.10.1177/1045389X09341200
29.
Nakasone
,
P. H.
, and
Silva
,
E. C. N.
,
2010
, “
Dynamic Design of Piezoelectric Laminated Sensors and Actuators Using Topology Optimization
,”
J. Intell. Mater. Syst. Struct.
,
21
(
16
), pp.
1627
1652
.10.1177/1045389X10386130
30.
Franco
,
V. R.
, and
Varoto
,
P. S.
,
2017
, “
Parameter Uncertainties in the Design and Optimization of Cantilever Piezoelectric Energy Harvesters
,”
Mech. Syst. Signal Process.
,
93
, pp.
593
609
.10.1016/j.ymssp.2017.02.030
31.
Ali
,
S. F.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Piezoelectric Energy Harvesting With Parametric Uncertainty
,”
Smart Mater. Struct.
,
19
(
10
), p.
105010
.10.1088/0964-1726/19/10/105010
32.
Li
,
Y.
, and
Zhou
,
S.
,
2018
, “
Probability Analysis of Asymmetric Tristable Energy Harvesters
,”
AIP Adv.
,
8
(
12
), p.
125212
.10.1063/1.5051415
33.
Abdelkefi
,
A.
,
Hajj
,
M. R.
, and
Nayfeh
,
A. H.
,
2012
, “
Uncertainty Quantification of Piezoelectric Energy Harvesters From Aeroelastic Vibrations
,”
MATEC Web Conf.
,
1
, p.
03007
.10.1051/matecconf/20120103007
34.
Nanda
,
A.
,
Singla
,
P.
, and
Karami
,
M. A.
,
2015
, “
Uncertainty Quantification of Energy Harvesting Systems Using Method of Quadratures and Maximum Entropy Principle
,”
ASME Paper No. SMASIS2015-9026
. 10.1115/SMASIS2015-9026
35.
Hosseinloo
,
A. H.
, and
Turitsyn
,
K.
,
2016
, “
Design of Vibratory Energy Harvesters Under Stochastic Parametric Uncertainty: A New Optimization Philosophy
,”
Smart Mater. Struct.
,
25
(
5
), p.
055023
.10.1088/0964-1726/25/5/055023
36.
Kim
,
J.
,
Lee
,
T. H.
,
Song
,
Y.
, and
Sung
,
T. H.
,
2017
, “
Robust Design Optimization of Fixed-Fixed Beam Piezoelectric Energy Harvester Considering Manufacturing Uncertainties
,”
Sens. Actuators A
,
260
, pp.
236
246
.10.1016/j.sna.2017.02.031
37.
Seong
,
S.
,
Hu
,
C.
, and
Lee
,
S.
,
2017
, “
Design Under Uncertainty for Reliable Power Generation of Piezoelectric Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
28
(
17
), pp.
2437
2449
.10.1177/1045389X17689945
38.
Peralta
,
P.
,
Ruiz
,
R. O.
, and
Taflanidis
,
A. A.
,
2020
, “
Bayesian Identification of Electromechanical Properties in Piezoelectric Energy Harvesters
,”
Mech. Syst. Signal Process.
,
141
, p.
106506
.10.1016/j.ymssp.2019.106506
39.
de Godoy
,
T. C.
, and
Trindade
,
M. A.
,
2012
, “
Effect of Parametric Uncertainties on the Performance of a Piezoelectric Energy Harvesting Device
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
spe2
), pp.
552
560
.10.1590/S1678-58782012000600003
40.
Song
,
P.
,
Wang
,
X. Q.
,
Matney
,
A.
,
Murthy
,
R.
, and
Mignolet
,
M. P.
, “
Nonlinear Geometric Thermoelastic Response of Structures With Uncertain Thermal and Structural Properties
,”
AIAA Paper No. 2017-0181
.10.2514/6.2017-0181
41.
Song
,
P.
, and
Mignolet
,
M. P.
,
2019
, “
Maximum Entropy-Based Uncertainty Modeling at the Elemental Level in Linear Structural and Thermal Problems
,”
Comput. Mech.
,
64
(
6
), pp.
1557
1566
.10.1007/s00466-019-01734-y
42.
Song
,
P.
,
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2019
, “
Maximum Entropy Structural-Thermal Uncertainty Modeling at the Finite Element Level
,”
AIAA Paper No. 2019-0443
. 10.2514/6.2019-0443
43.
Soize
,
C.
,
2000
, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.10.1016/S0266-8920(99)00028-4
44.
Soize
,
C.
,
2012
,
Stochastic Models of Uncertainties in Computational Mechanics
,
American Society of Civil Engineers (ASCE)
,
Reston, VA
.
45.
Soize
,
C.
,
2017
,
Uncertainty Quantification: An Accelerated Course in Advanced Applications in Computational Engineering
,
Springer
,
Cham, Switzerland
.
46.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
von Flotow
,
A.
,
1990
, “
Modeling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
1
(
3
), pp.
327
354
.10.1177/1045389X9000100305
47.
Liao
,
Y.
, and
Liang
,
J.
,
2019
, “
Unified Modeling, Analysis and Comparison of Piezoelectric Vibration Energy Harvesters
,”
Mech. Syst. Signal Process.
,
123
, pp.
403
425
.10.1016/j.ymssp.2019.01.025
48.
Liao
,
Y.
,
2019
, “
Analysis of Power and Efficiency of Piezoelectric Vibration Energy Harvesters Through an Impedance Plot
,”
J. Intell. Mater. Syst. Struct.
,
30
(
20
), pp.
3036
3055
.10.1177/1045389X19873424
49.
Liao
,
Y.
, and
Liang
,
J.
,
2018
, “
Maximum Power, Optimal Load, and Impedance Analysis of Piezoelectric Vibration Energy Harvesters
,”
Smart Mater. Struct.
,
27
(
7
), p.
075053
.10.1088/1361-665X/aaca56
50.
Staworko
,
M.
, and
Uhl
,
T.
,
2008
, “
Modeling and Simulation of Piezoelectric Elements-Comparison of Available Methods and Tools
,”
Mechanics
,
27
, pp.
161
171
.https://www.infona.pl/resource/bwmeta1.element.baztech-article-AGHM-0004-0104
51.
Vyas
,
V.
,
Wang
,
X. Q.
,
Jain
,
A.
, and
Mignolet
,
M. P.
,
2015
, “
Nonlinear Geometric Reduced Order Model for the Response of a Beam With a Piezoelectric Actuator
,”
AIAA Paper No. 2015-0692
.10.2514/6.2015-0692
52.
Soize
,
C.
,
2005
, “
Random Matrix Theory for Modeling Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1333
1366
.10.1016/j.cma.2004.06.038
53.
Song
,
P.
,
2019
, “
Response of Heated Structures: Reduced Order Models and Uncertainty Modeling
,” Ph.D. dissertation,
Arizona State University
,
Tempe, AZ
.
54.
Perez
,
R. A.
,
Smarslok
,
B. P.
, and
Mignolet
,
M. P.
, “
Deterministic and Stochastic Partial Linearization Approach for Nonlinear Reduced Order Models of Structures
,”
AIAA Paper No. 2015-2052
.10.2514/6.2015-2052
55.
Wang
,
X. Q.
, and
Mignolet
,
M. P.
,
2020
, “
Uncertainty Quantification of Nonlinear Stiffness Coefficients in Non-Intrusive Reduced Order Models
,”
Proceedings of the 38th IMAC, Conference and Exposition on Structural Dynamics
,
Houston, TX
, Feb. 10–13, Paper No. 8474.
You do not currently have access to this content.