Abstract

Bayesian networks (BNs) are being studied in recent years for system diagnosis, reliability analysis, and design of complex engineered systems. In several practical applications, BNs need to be learned from available data before being used for design or other purposes. Current BN learning algorithms are mainly developed for networks with only discrete variables. Engineering design problems often consist of both discrete and continuous variables. This paper develops a framework to handle continuous variables in BN learning by integrating learning algorithms of discrete BNs with Gaussian mixture models (GMMs). We first make the topology learning more robust by optimizing the number of Gaussian components in the univariate GMMs currently available in the literature. Based on the BN topology learning, a new multivariate Gaussian mixture (MGM) strategy is developed to improve the accuracy of conditional probability learning in the BN. A method is proposed to address this difficulty of MGM modeling with data of mixed discrete and continuous variables by mapping the data for discrete variables into data for a standard normal variable. The proposed framework is capable of learning BNs without discretizing the continuous variables or making assumptions about their conditional probability densities (CPDs). The applications of the learned BN to uncertainty quantification and model calibration are also investigated. The results of a mathematical example and an engineering application example demonstrate the effectiveness of the proposed framework.

References

1.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2014
, “
Probabilistic Graphical Modeling of Use Stage Energy Consumption: A Lightweight Vehicle Example
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101403
.
2.
Liang
,
C.
, and
Mahadevan
,
S.
, 2017, “
Pareto Surface Construction for Multi-Objective Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp. 1865–1882.
3.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(2), pp. 225–233.
4.
Cheng
,
Y.
, and
Du
,
X.
,
2016
, “
System Reliability Analysis With Dependent Component Failures During Early Design Stage—A Feasibility Study
,”
ASME J. Mech. Des.
,
138
(
5
), p.
051405
.
5.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Resilience Assessment Based on Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111404
.
6.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Du
,
X.
,
2016
, “
Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
2
(
3
), p.
031005
.
7.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
.
8.
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2013
, “
Dynamic Safety Analysis of Process Systems by Mapping Bow-Tie Into Bayesian Network
,”
Process Saf. Environ. Prot.
,
91
(
1–2
), pp.
46
53
.
9.
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2012
, “
Dynamic Risk Analysis Using Bow-Tie Approach
,”
Reliab. Eng. Syst. Saf.
,
104
, pp.
36
44
.
10.
Yuan
,
Z.
,
Khakzad
,
N.
,
Khan
,
F.
, and
Amyotte
,
P.
,
2015
, “
Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks
,”
Risk Anal.
,
35
(
2
), pp.
278
291
.
11.
Gradowska
,
P. L.
, and
Cooke
,
R. M.
,
2014
, “
Estimating Expected Value of Information Using Bayesian Belief Networks: A Case Study in Fish Consumption Advisory
,”
Environ. Syst. Decisions
,
34
(
1
), pp.
88
97
.
12.
Liang, C., and Mahadevan, S., 2016, “
Multidisciplinary Optimization Under Uncertainty Using Bayesian Network
,”
SAE Int. J. Mater. Manf.
,
9
(2), pp. 419–429.
13.
Bartram
,
G.
, and
Mahadevan
,
S.
,
2014
, “
Integration of Heterogeneous Information in SHM Models
,”
Struct. Control Health Monit.
,
21
(
3
), pp.
403
422
.
14.
Groth
,
K. M.
, and
Swiler
,
L. P.
,
2013
, “
Bridging the Gap Between HRA Research and HRA Practice: A Bayesian Network Version of SPAR-H
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
33
42
.
15.
Groth
,
K. M.
, and
Mosleh
,
A.
,
2012
, “
A Data-Informed PIF Hierarchy for Model-Based Human Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
108
, pp.
154
174
.
16.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2015
, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
194
209
.
17.
Hu
,
Z.
, and
Mahadevan
,
S.
, 2017, “
Bayesian Network Learning for Uncertainty Quantification
,”
ASME
Paper No. DETC2017-68187.
18.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. Part D: Transp. Environ.
,
32
, pp.
421
434
.
19.
Vinh
,
N. X.
,
Chetty
,
M.
,
Coppel
,
R.
, and
Wangikar
,
P. P.
,
2011
, “
GlobalMIT: Learning Globally Optimal Dynamic Bayesian Network With the Mutual Information Test Criterion
,”
Bioinformatics
,
27
(
19
), pp.
2765
2766
.
20.
Ziebarth
,
J. D.
,
Bhattacharya
,
A.
, and
Cui
,
Y.
,
2013
, “
Bayesian Network Webserver: A Comprehensive Tool for Biological Network Modeling
,”
Bioinformatics
,
29
(
21
), pp.
2801
2803
.
21.
Murphy
,
K. P.
,
2002
, “
Dynamic Bayesian Networks: Representation, Inference and Learning
,”
Ph.D. dissertation
, University of California, Berkeley, CA.https://ibug.doc.ic.ac.uk/media/uploads/documents/courses/DBN-PhDthesis-LongTutorail-Murphy.pdf
22.
Karkera
,
K. R.
,
2014
,
Building Probabilistic Graphical Models With Python
,
Packt Publishing
, Birmingham, UK.
23.
Hanea
,
A.
,
Kurowicka
,
D.
,
Cooke
,
R. M.
, and
Ababei
,
D.
,
2010
, “
Mining and Visualising Ordinal Data With Non-Parametric Continuous BBNs
,”
Comput. Stat. Data Anal.
,
54
(
3
), pp.
668
687
.
24.
Bedford
,
T.
, and
Cooke
,
R. M.
,
2002
, “
Vines: A New Graphical Model for Dependent Random Variables
,”
Ann. Stat.
,
30
(
4
), pp.
1031
1068
.http://www.jstor.org/stable/1558694
25.
Shenoy
,
P. P.
, and
West
,
J. C.
,
2011
, “
Inference in Hybrid Bayesian Networks Using Mixtures of Polynomials
,”
Int. J. Approximate Reasoning
,
52
(
5
), pp.
641
657
.
26.
Dojer
,
N.
,
Bednarz
,
P.
,
Podsiadło
,
A.
, and
Wilczyński
,
B.
,
2013
, “
BNFinder2: Faster Bayesian Network Learning and Bayesian Classification
,”
Bioinformatics
,
29
(
16
), pp.
2068
2070
.
27.
McGeachie
,
M. J.
,
Chang
,
H.-H.
, and
Weiss
,
S. T.
,
2014
, “
CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference With Mixed Discrete and Continuous Data
,”
PLoS Comput. Biol.
,
10
(
6
), p.
e1003676
.
28.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.
29.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Ao
,
D.
,
2017
, “
Uncertainty Aggregation and Reduction in Structure–Material Performance Prediction
,”
Comput. Mech.
, epub.
30.
Scutari
,
M.
,
2009
, “
Learning Bayesian Networks With the bnlearn R Package
,” preprint
arXiv: 0908.3817
.https://arxiv.org/abs/0908.3817
31.
Bonissone
,
P.
,
Henrion
,
M.
,
Kanal
,
L.
, and
Lemmer
,
J.
, “
Equivalence and Synthesis of Causal Models
,”
Uncertainty Artificial Intelligence
, Elsevier, Amsterdam, The Netherlands, pp.
255
270
.
32.
Wilczyński
,
B.
, and
Dojer
,
N.
,
2009
, “
BNFinder: Exact and Efficient Method for Learning Bayesian Networks
,”
Bioinformatics
,
25
(
2
), pp.
286
287
.
33.
Bilmes
,
J. A.
,
1998
, “
A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models
,”
Int. Comput. Sci. Inst.
,
4
(
510
), p.
126
.http://www.ee.iisc.ac.in/new/people/faculty/prasantg/downloads/GP-GMM.pdf
34.
Sahin
,
F.
,
Yavuz
,
M. Ç.
,
Arnavut
,
Z.
, and
Uluyol
,
Ö.
,
2007
, “
Fault Diagnosis for Airplane Engines Using Bayesian Networks and Distributed Particle Swarm Optimization
,”
Parallel Comput.
,
33
(
2
), pp.
124
143
.
35.
Yang
,
L.
, and
Lee
,
J.
,
2012
, “
Bayesian Belief Network-Based Approach for Diagnostics and Prognostics of Semiconductor Manufacturing Systems
,”
Rob. Comput.-Integr. Manuf.
,
28
(
1
), pp.
66
74
.
36.
Rodriguez‐Zas
,
S.
, and
Ko
,
Y.
,
2011
, “
Elucidation of General and Condition‐Dependent Gene Pathways Using Mixture Models and Bayesian Networks
,”
Applied Statistics for Network Biology: Methods in Systems Biology
, Wiley-Blackwell, Weinheim, Germany, pp. 91–103.
37.
Sun
,
S.
,
Zhang
,
C.
, and
Yu
,
G.
,
2006
, “
A Bayesian Network Approach to Traffic Flow Forecasting
,”
IEEE Trans. Intell. Transp. Syst.
,
7
(
1
), pp.
124
132
.
38.
Zhang
,
H.
,
Giles
,
C. L.
,
Foley
,
H. C.
, and
Yen
,
J.
, 2017, “
Probabilistic Community Discovery Using Hierarchical Latent Gaussian Mixture Model
,” 22nd National conference on Artificial Intelligence (
AAAI'07
), Vancouver, BC, Canada, July 22–26, pp.
663
668
.http://www.aaai.org/Papers/AAAI/2007/AAAI07-105.pdf
39.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Time-Dependent Reliability Analysis Using a Vine-ARMA Load Model
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
1
), p.
011007
.
40.
Davies
,
S.
, and
Moore
,
A.
, “
Mix-Nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous and Discrete Variables
,”
Sixteenth Conference on Uncertainty in Artificial Intelligence
(UAI), Stanford, CA, June 30–July 3, pp.
168
175
.
41.
Morlini
,
I.
,
2012
, “
A Latent Variables Approach for Clustering Mixed Binary and Continuous Variables Within a Gaussian Mixture Model
,”
Adv. Data Anal. Classif.
,
6
(
1
), pp.
5
28
.
42.
Bartram
,
G. W.
,
2013
, “
System Health Diagnosis and Prognosis Using Dynamic Bayesian Networks
,”
Ph.D. thesis
, Vanderbilt University, Nashville, TNhttp://etd.library.vanderbilt.edu/available/etd-07312013-170858/unrestricted/Bartram.pdf.
You do not currently have access to this content.