Abstract

The effective management of process deviations and abnormal events depends on operational actions in providing the appropriate responses to each situation. Applications with requirements focused on the provision of resources tend to be handled by a human–machine interface (HMI) along with supervisory control and data acquisition (SCADA). Process reliability is achieved if the operation ensures that actions will be performed according to the required response and priority levels. This paper presents a novel architecture entitled the heuristic-based recommendation system (HB-RS). The main goal is to provide resources capable of streamlining the process of actively handling abnormal situations. For recommendation purposes, the use of probabilistic networks is proposed, which are well suited to represent uncertainty elements present in engineering applications. To create the inference mechanism for these systems, a multi-entity Bayesian network (MEBN) is proposed, highlighting the importance of semantic characterization via knowledge-based, probabilistic graphical model formalism, which is closely linked to the modeling paradigm in which we can predict situations. The developed capabilities have been applied to a real case study in the operation of a metro train system, and the results obtained indicate the value of the proposed method.

References

1.
Faccio
,
M.
,
Granata
,
I.
,
Menini
,
A.
,
Milanese
,
M.
,
Rossato
,
C.
,
Bottin
,
M.
,
Minto
,
R.
,
Pluchino
,
P.
,
Gamberini
,
L.
,
Boschetti
,
G.
, and
Rosati
,
G.
,
2023
, “
Human Factors in Cobot Era: A Review of Modern Production Systems Features
,”
J. Intell. Manuf.
,
34
(
1
), pp.
85
106
.10.1007/s10845-022-01953-w
2.
Ali
,
E. M.
,
Ahmed
,
M. M.
, and
Wulff
,
S. S.
,
2019
, “
Detection of Critical Safety Events on Freeways in Clear and Rainy Weather Using SHRP2 Naturalistic Driving Data: Parametric and Non-Parametric Techniques
,”
Eng. Saf. Sci.
,
119
, pp.
141
149
.10.1016/j.ssci.2019.01.007
3.
Kazemi
,
Z.
,
Safavi
,
A. A.
,
Pouresmaeeli
,
S.
, and
Naseri
,
F.
,
2019
, “
A Pratical Framework for Implementing Multivariate Monitoring Techniques Into Distributed Control System
,”
Control Eng. Pract.
,
82
, pp.
118
129
.10.1016/j.conengprac.2018.10.003
4.
2016
, “
Management of Alarm Systems for the Process Industries
,”
The International Society of Automation
, New York, Report No.
ANSI/ISA-18.2:2016
.
5.
Morel
,
G.
,
Pereira
,
C. E.
, and
Nof
,
S. Y.
,
2019
, “
Historical Survey and Emerging Challenges of Manufacturing Automation Modeling and Control: A Systems Architecting Perspective
,”
Control Eng. Pract.
,
47
, pp.
21
34
.10.1016/j.arcontrol.2019.01.002
6.
ANSI/ISA-101.01:2015
,
2015
, “
Human Machine Interface for Process Automation Systems
,” International Society of Automation, New York, ISBN: 978-1-941546-46-8.
7.
ISO-11064-5:2008
,
2008
, “
Ergonomic Design of Control Center - Part 5: Displays and Control
,” New York, ISBN: 978 0 580 57609.
8.
Hildebrandt
,
C.
,
Kocher
,
A.
,
Kustner
,
C.
,
Lopez-Enriquez
,
C.-M.
,
Muller
,
A. W.
,
Caesar
,
B.
,
Gundlach
,
C. S.
, and
Fay
,
A.
,
2020
, “
Ontology Building for Cyber-Physical Systems: Application in the Manufacturing Domain
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
3
), pp.
1266
1282
.10.1109/TASE.2020.2991777
9.
Li
,
D.
,
Fast-Berglund
,
A.
, and
Paulin
,
A.
,
2019
, “
Current and Future Industry 4.0 Capabilities for Information and Knowledge Sharing
,”
Int J Adv Manuf Technol.
, 105, pp.
3951
3963
.10.1007/s00170-019-03942-5
10.
Cheng
,
C.
,
Qiao
,
X.
,
Luo
,
H.
,
Wang
,
G.
,
Teng
,
H.
, and
Zhang
,
B.
,
2020
, “
Data-Driven Incipient Fault Detection and Diagnosis for the Running Gear in High-Speed Trains
,”
IEEE Trans. Veh. Technol.
,
69
(
9
), pp.
9566
9576
.10.1109/TVT.2020.3002865
11.
Russel
,
J. S.
, and
Norvig
,
P.
,
2003
, “
Artificial Intelligence A Modern Approach
,” Prentice Hall, Hoboken, NJ, p.
1132
.
12.
Fisher
,
A.
,
Igel
,
C.
,
Zhang
,
J.
, and
Xue
,
Y.
,
2012
, “
An Introduction to Restricted Boltzmann Machines
,”
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP
, Buenos Aires, Argentina, Sept. 3–6, pp.
14
36
.10.1007/978-3-642-33275-3_2
13.
Pearl
,
J.
,
1988
, “
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
,”
Morgan Kaufmann
, San Francisco, CA, p.
552
.10.1016/C2009-0-27609-4
14.
Locher
,
M.
,
Laskey
,
K. B.
, and
Costa
,
P. C. G.
,
2020
, “
Design Patterns for Modeling First-Order Expressive Bayesian Network
,”
Knowl. Eng. Rev.
,
35
, pp.
1
26
.10.1017/S026988892000034X
15.
Silva
,
M. J.
,
Künzel
,
G.
, and
Pereira
,
C. E.
,
2022
, “
A Predictive, Context-Dependent Stochastic Model for Engineering Applications
,”
XIV Workshop Intell. Manuf. Syst.
,
55
(
2
), pp.
402
407
.10.1016/j.ifacol.2022.04.227
16.
Fayyad
,
U.
,
Piatetsky-Shapiro
,
G.
, and
Smyth
,
P.
,
1996
, “
From Data Mining to Knowledge From Volumes of Data
,”
Ai Mag.
,
17
(
3
), pp.
37
54
.10.1609/aimag.v17i3.1230
17.
Wirth
,
R.
, and
Hipp
,
J.
,
2000
, “
CRISP-DM: Towards a Standard Process Model for Data Mining
,”
Proceedings of the Fourth International Conference on the Practical Applications of Knowledge Discovery Data Mining
, Manchester, UK, Apr. 11–13, pp.
29
39
.https://cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf
18.
Wang
,
Y.
,
Pan
,
Z.
,
Yuan
,
X.
,
Yang
,
C.
, and
Gui
,
W.
,
2020
, “
A Novel Deep Learnig Based Fault Diagnosis Approach for Chemical Process With Extended Deep Belief Network
,”
ISA Trans.
,
96
, pp.
457
467
.10.1016/j.isatra.2019.07.001
19.
Lee
,
J.
,
Kao
,
H.
, and
Yang
,
S.
,
2014
, “
Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment
,”
Procedia CIRP
, 16, pp.
3
8
.10.1016/j.procir.2014.02.001
20.
Zhu
,
J.
,
Ge
,
Z.
,
Song
,
Z.
, and
Gao
,
F.
,
2018
, “
Review and Big Data Perspectives on Robust Data Mining Approaches for Industrial Process Modeling With Outliers and Missing Data
,”
Annu. Rev. Control.
,
46
, pp.
107
133
.10.1016/j.arcontrol.2018.09.003
21.
Zuehlke
,
D.
,
2008
, “
SmartFactory – From Vision to Reality in Factory Technologies
,”
IFAC Proceedings Volumes
, 41(2), pp. 14101–14108.10.3182/20080706-5-KR-1001.02391
22.
Emmanouilidis
,
C.
,
Pistofidis
,
P.
,
Bertoncelj
,
L.
,
Katsouros
,
V.
,
Fournaris
,
A.
,
Koulamas
,
C.
, and
Ruiz-Carcel
,
C.
,
2019
, “
Enabling the Human in the Loop: Linked Data and Knowledge in Industrial Cyber-Physical Systems
,”
Annu. Rev. Control
,
47
, pp.
249
265
.10.1016/j.arcontrol.2019.03.004
23.
Lee
,
J.
,
2020
, “
Industrial AI
,” Applications with Sustainable Performance, Springer, Berlin, Germany, p. 184.
24.
IEC-62264
,
2013
, “
Enterprise-Control System Integration
,” p. 154, ISBN 978-2-83220-734-5.
25.
ANSI/ISA-95
,
2010
, “
Enterprise-Control System Integration
,” ISA, p. 90, ISBN: 978-1-936007-47-9.
26.
Rohmer
,
J.
,
2020
, “
Uncertainties in Conditional Probability Tables of Discrete Bayesian Belief Networks: A Comprehensive Review
,”
Eng. Appl. Artif. Intell.
,
88
, p.
103384
.10.1016/j.engappai.2019.103384
27.
Carvalho
,
R. N.
,
Laskey
,
K. B.
, and
Costa
,
P. C. G.
,
2016
, “
Uncertainty Modelling Process for Semantic Technology
,”
PeerJComputing
,
v
, pp.
1
27
.10.7717/peerj-cs.77
28.
Laskey
,
K. B.
,
2008
, “
Mebn: A Language for First-Order Bayesian Knowledge Bases
,”
Artif. Intell.
,
172
(
2–3
), pp.
140
178
.10.1016/j.artint.2007.09.006
29.
Hinton
,
G. E.
, and
Sejnowski
,
T. J.
,
1986
, “
Learning and Relearning in Boltzmann Machines
,”
Parall. Distrib. Process.
, Vol. 1, MIT Press, Cambridge, MA, pp.
282
317
.https://dl.acm.org/doi/10.5555/104279.104291
30.
Haykin
,
S.
,
1999
, “
Neural Networks: A Comprehensive Foundation
,” Pearson, London, UK, p. 842.
31.
Lecun
,
Y.
,
Chopra
,
S.
,
Hadsell
,
R.
, Ranzato, M. A., and Huang, F. J.
2006
, “
A Tutorial on Energy-Based Learning
,”
Predicting Structured Data, MIT Press
, Cambridge, MA.
32.
Hinton
,
G. E.
,
Sejnowski
,
T. J.
, and
Ackley
,
D. H.
,
1984
, “
Boltzmann Machines: Constraint Satisfaction Networks That Learn
,”
Department of Computing Science, Carnegie-Mellon University
, Pittsburgh, PA, p.
42
.
33.
Montgomery
,
D. C.
,
2005
,
Design and Analysis of Experiments
, 6th ed.,
Wiley
, New York, pp.
429
437
.
34.
Handley
,
W.
,
Millea
,
M.
,
Li
,
C.
,
Gao
,
X.
, and
Zhao
,
J.
,
2019
, “
Maximum-Entropy Priors With Derived Parameters in a Specified Distribution
,”
Entropy
,
21
(
3
), p.
272
.10.3390/e21030272
35.
Hino
,
H.
, and
Murata
,
N.
,
2014
, “
A Non-Parametric Maximum Entropy Clustering
,”
24th International Conference on Artificial Neural Networks
(
ICANN
), Hamburg, Germany, Sept. 15–19, pp.
113
120
.10.1007/978-3-319-11179-7_15
36.
Allah Bukhsh
,
Z.
,
Saeed
,
A.
,
Stipanovic
,
I.
, and
Doree
,
A. G.
,
2019
, “
Predictive Maintenance Using Tree-Based Classification Techniques: A Case of Railway Switches
,”
Transp. Res. Part C Emer. Technol.
,
101
, pp.
35
54
.10.1016/j.trc.2019.02.001
37.
Dadashi
,
N.
,
Golightly
,
D.
, and
Sharples
,
S.
,
2021
, “
Modelling Decision-Making Within Rail Maintenance Control Rooms
,”
Cognit. Technol. Work
,
23
(
2
), pp.
255
271
.10.1007/s10111-020-00636-x
38.
Bielza
,
C.
,
Gómez
,
M.
, and
Shenoy
,
P.
,
2010
, “
Modeling Challenges With Influence Diagrams: Constructing Probability and Utility Models
,”
Decis. Support Syst.
,
49
(
4
), pp.
354
364
.10.1016/j.dss.2010.04.003
39.
Macchi
,
M.
,
Garetti
,
M.
,
Centrone
,
D.
,
Fumagalli
,
L.
, and
Piero Pavirani
,
G.
,
2012
, “
Maintenance Management of Railway Infrastructures Based on Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
104
, pp.
71
83
.10.1016/j.ress.2012.03.017
40.
Kyriakidis
,
M.
,
Hirsch
,
R.
, and
Majumdar
,
A.
,
2012
, “
Metro Railway Safety: An Analysis of Accident Precursors
,”
Saf. Sci.
,
50
(
7
), pp.
1535
1548
.10.1016/j.ssci.2012.03.004
41.
Louie
,
J.
,
Shalaby
,
A.
, and
Habib
,
K. N.
,
2017
, “
Modelling the Impact of Causal and Non-Causal Factors on Disruption Duration for Toronto's Subway System: An Exploratory Investigation Using Hazard Modelling
,”
Accident Anal. Prev.
,
98
, pp.
232
240
.10.1016/j.aap.2016.10.008
42.
Zhou
,
A.
,
Yu
,
D.
, and
Zhang
,
W.
,
2015
, “
A Research on Intelligent Fault Diagnosis of Wind Turbines Based on Ontology and FMECA
,”
Adv. Eng. Inf.
,
29
(
1
), pp.
115
125
.10.1016/j.aei.2014.10.001
43.
Sinha
,
Y.
, and
Steel
,
J.
,
2015
, “
A Progressive Study Into Offshore Wind Farm Maintenance Optimisation Using Risk Based Failure Analysis
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
735
742
.10.1016/j.rser.2014.10.087
44.
Zhang
,
X.
,
Deng
,
Y.
,
Li
,
Q.
,
Skitmore
,
M.
, and
Zhou
,
Z.
,
2016
, “
An Incident Database for Improving Metro Safety: The Case of Shanghai
,”
Saf. Sci.
,
84
, pp.
88
96
.10.1016/j.ssci.2015.11.023
45.
Moaveni
,
B.
,
Fathabadi
,
F. R.
, and
Molavi
,
A.
,
2020
, “
Supervisory Predictive Control for Wheel Sleep Prevention and Tracking of Desired Speed Profile in Electric Trains
,”
Artif. Intell.
,
101
, pp.
102
115
.10.1016/j.isatra.2020.01.011
46.
Hill
,
R. J.
,
1994
, “
Electric Railway Traction. Part 1 Electric Traction and DC Motor Drives
,”
Power Eng. J.
,
8
(
1
), pp.
47
56
.10.1049/pe:19940105
47.
Wang
,
C.
,
Wang
,
L.
,
Chen
,
H.
,
Yang
,
Y.
, and
Li
,
Y.
,
2021
, “
Fault Diagnosis of Train Network Control Management System Based on Dynamic Fault Tree and Bayesian Network
,”
IEEE Access
,
9
, pp.
2618
2632
.10.1109/ACCESS.2020.3046681
48.
Soleimani
,
M.
,
Campean
,
F.
, and
Neagu
,
D.
,
2021
, “
Integration of Hidden Markov Modelling and Bayesian Network for Fault Detection and Prediction of Complex Engineered Systems
,”
Reliab. Eng. Syst. Saf.
,
215
, p.
107808
.10.1016/j.ress.2021.107808
49.
Capallera
,
M.
,
Meteier
,
Q.
,
De Salis
,
E.
,
Widmer
,
M.
,
Angelini
,
L.
,
Carrino
,
S.
,
Sonderegger
,
A.
,
Khaled
,
O. A.
, and
Mugellini
,
E.
,
2023
, “
A Contextual Multimodal System for Increasing Situation Awareness and Takeover Quality in Conditionally Automated Driving
,”
IEEE Access
,
11
, pp.
5746
5771
.10.1109/ACCESS.2023.3236814
50.
Stefani
,
T.
,
Christensen
,
J. M.
,
Girija
,
A. A.
,
Gupta
,
S.
,
Durak
,
U.
,
Köster
,
F.
,
Krüger
,
T.
, and
Hallerbach
,
S.
,
2024
, “
Automated Scenario Generation From Operational Design Domain Model for Testing AI-Based Systems in Aviation
,”
CEAS Aeronaut. J.
, (epub).10.1007/s13272-024-00772-4
51.
Amokrane-Ferka
,
K.
,
Marot
,
A.
,
Meddeb
,
M.
,
Dussartre
,
M.
,
Crochepierre
,
L.
,
Rozier
,
A.
,
Renoir
,
N.
,
Gosselin
,
S.
,
Girod
,
H.
,
Khouadjia
,
M.
, et al.,
2024
, “
Framework for Human and AI-Assistant Bidirectional Interaction Applied to Industrial System Operations
,”
HAL Open Science
, Lyon, France.https://hal.science/hal-04739457v1/document
52.
Silva
,
M. J.
,
Pereira
,
C. E.
, and
Götz
,
M.
,
2019
, “
On the Use of Inductive Biases for Semantic Characterization of Industrial Alarm Systems
,”
Innovative Smart Grid Technologies Conference (ISGT Latin America)
,
Gramado, Brazil
, Sept. 15–18, pp.
1
6
.10.1109/ISGT-LA.2019.8894963
53.
Wu
,
D.
, and
Gary Wang
,
G.
,
2020
, “
Knowledge-Assisted Optimization for Large-Scale Design Problems: A Review and Proposition
,”
ASME J. Mech. Des.
,
142
(
1
), p.
010801
.10.1115/1.4044525
54.
Nicola
,
G.
,
1995
, “
Formal Ontology, Conceptual Analysis and Knowledge Representation
,”
Int. J. Human-Comput. Stud.
,
43(5–6)
, pp.
625
640
.10.1006/IJHC.1995.1066
55.
Zhou
,
Q.
,
Yan
,
P.
,
Liu
,
H.
, and
Xin
,
H.
,
2019
, “
A Hybrid Fault Diagnosis Method for Mechanical Components Based on Ontology and Signal Analysis
,”
J. Intell. Manuf., pp.
,
30
(
4
), pp.
1693
1715
.10.1007/s10845-017-1351-1
56.
Schneider
,
J. F.
,
Pauwels
,
P.
, and
Steiger
,
S.
,
2017
, “
Ontology-Based Modeling of Control Logic in Building Automation Systems
,”
IEEE Trans. Ind. Inf.
,
13
(
6
), pp.
3350
3360
.10.1109/TII.2017.2743221
57.
Aziz
,
A.
,
Ahmed
,
S.
, and
Khan
,
F. I.
,
2019
, “
An Ontology-Based Methodology for Hazard Identification and Causation Analysis
,”
Process Saf. Environ. Prot.
,
123
, pp.
87
98
. 10.1016/j.psep.2018.12.008
58.
Yang
,
Z.
,
Wan
,
C.
,
Yang
,
Z.
, and
Yu
,
Q.
,
2021
, “
Using Bayesian Network-Based TOPSIS to Aid Dynamic Port State Control Detention Risk Control Decision
,”
Reliab. Eng. Syst. Saf.
,
213
, p.
107784
. 10.1016/j.ress.2021.107784
59.
Saez
,
M. A.
,
Maturana
,
F. P.
,
Barton
,
K.
, and
Tilbury
,
D. M.
,
2020
, “
Context-Sensitive Modeling and Analysis of Cyber-Physical Manufacturing Systems for Anomaly Detection and Diagnosis
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
1
), pp.
29
40
. 10.1109/TASE.2019.2918562
60.
Gruber
,
T. R. A.
,
1993
, “
Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquisi, London
,
5
(
2
), pp.
199
220
.10.1006/knac.1993.1008
61.
McGuinness
,
D. L.
, and
Van Hamrlen
,
F.
,
2004
,
OWL: Web Ontology Language Overview, W3C Recommendation
, Vol.
10
, W3C Standards,
Wakefield, MA
, p.
10
.https://www.w3.org/TR/owl-features/
62.
Neches
,
R.
,
Fikes
,
R. E.
,
Finim
,
T.
,
Gruber
,
T.
,
Patil
,
R.
,
Senator
,
T.
, and
Swartout
,
W. R.
,
1991
, “
Enabling Technology for Knowledge Sharing
,”
AI Mag.
,
12
(
3
), pp.
36
56
.10.1609/aimag.v12i3.902
63.
Ming
,
Z.
,
Nellippallil
,
A. B.
,
Yan
,
Y.
,
Wang
,
G.
,
Goh
,
C. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
PDSIDES—A Knowledge-Based Platform for Decision Support in the Design of Engineering Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041001
.10.1115/1.4040461
64.
Bernaras
,
A.
,
Laresgoiti
,
L.
,
Corera
,
J.
, and
Bartolomé
,
N.
,
1996
, “
An Ontology for Fault Diagnosis in Electrical Networks
,”
IEEE Proceedings of the Intelligent System a Applications to Power System
, Orlando, FL, Jan. 28–Feb. 2, pp.
199
203
.10.1109/ISAP.1996.501068
65.
Ensley
,
R. M.
,
1995
, “
Toward a Theory of Situation Awareness in Dynamic Systems
,”
Humam Factor Ergon.
,
37
, pp.
32
64
. 10.1518/001872095779049543
You do not currently have access to this content.