Abstract

In any nonlinear system as complex as an urban rail transit network or metrorail network, some incidence of perturbations of its state is inevitable. These perturbations, such as natural hazards, can highly affect the networks' resilience. Increasing the ability of metrorail networks to withstand such perturbations requires robustness and vulnerability assessments as key attributes of resilience and necessary steps toward developing reliable networks. Most models developed for this purpose associate a network's failures to binary representations of the failure of its components without incorporating weight factors. Since ridership is a primary factor to define the metrorail network performance, this paper proposes a general ridership pattern, considers different failure cases, and uses a novel methodology to quantitatively measure the weighted-network resilience attributes incorporating ridership throughout the Washington, DC Metrorail as a case study. The proposed methodology has clear relationships to adjacency and link-weight matrices and defines a new expression for the weighted global network efficiency based on the sum of weights on each geodesic path. Results show that the most vulnerable stations and links hold critical positions in the network topological structure and/or bear larger amounts of ridership. For the case study, the most vulnerable components include transfer stations located in the city center as well as stations and links on the northwest section of the Red Line. The methodology presented herein provides insights for enhancing critical components during the planning and operation of a metrorail by mitigating the risks associated with failure events.

References

1.
Latora
,
V.
, and
Marchiori
,
M.
,
2002
, “
Is the Boston Subway a Small-World Network?
,”
Phys. A
,
314
(
1–4
), pp.
109
113
.10.1016/S0378-4371(02)01089-0
2.
Angeloudis
,
P.
, and
Fisk
,
D.
,
2006
, “
Large Subway Systems as Complex Networks
,”
Phys. A
,
367
, pp.
553
558
.10.1016/j.physa.2005.11.007
3.
Derrible
,
S.
, and
Kennedy
,
C.
,
2010
, “
The Complexity and Robustness of Metro Network
,”
Phys. A
,
389
(
17
), pp.
3678
3691
.10.1016/j.physa.2010.04.008
4.
Cadarso
,
L.
,
Marín
,
Á.
, and
Maróti
,
G.
,
2013
, “
Recovery of Disruptions in Rapid Transit Networks
,”
Transp. Res. Part E: Logistics Transp. Rev.
,
53
, pp.
15
33
.10.1016/j.tre.2013.01.013
5.
Nguyen
,
T. K.
,
Beugin
,
J.
, and
Marais
,
J.
,
2015
, “
Method for Evaluating an Extended Fault Tree to Analyze the Dependability of Complex Systems: Application to a Satellite-Based Railway System
,”
Reliab. Eng. Syst. Saf.
,
133
, pp.
300
313
.10.1016/j.ress.2014.09.019
6.
PPD (Presidential Policy Directive)
,
2013
, “
Critical Infrastructure Security and Resilience
,”
PPD21
, accessed Dec. 12, 2019, https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
7.
Nagurney
,
A.
,
Qiang
,
Q.
, and
Nagurney
,
L. S.
,
2010
, “
Environmental Impact Assessment of Transportation Networks With Degradable Links in Era of Climate Change
,”
Int. J. Sustainable Transp.
,
4
(
3
), pp.
154
171
.10.1080/15568310802627328
8.
Sun
,
W.
,
Bocchini
,
P.
, and
Davison
,
B. D.
,
2020
, “
Resilience Metrics and Measurement Methods for Transportation Infrastructure: The State of the Art
,”
Sustainable Resilient Infrastruct.
,
5
(
3
), pp.
168
199
.10.1080/23789689.2018.1448663
9.
Paul
,
S.
,
2014
, “
Vulnerability Concepts and Its Application in Various Fields: A Review on Geographical Perspective
,”
J. Life Earth Sci.
,
8
, pp.
63
81
.10.3329/jles.v8i0.20150
10.
Tierney
,
K.
, and
Bruneau
,
M.
,
2007
, “
Conceptualized and Measuring Resilience
,”
TR News
,
250
, pp.
14
17
.https://www.researchgate.net/publication/279696613_Conceptualizing_and_measuring_resilience_A_key_to_disaster_loss_reduction
11.
Ayyub
,
B. M.
,
2015
, “
Practical Resilience Metrics for Planning, Design, and Decision Making
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
1
(
3
), p.
04015008
.10.1061/AJRUA6.0000826
12.
Jenelius
,
E.
,
Petersen
,
T.
, and
Mattsson
,
L. G.
,
2006
, “
Importance and Exposure in Road Network Vulnerability Analysis
,”
Transp. Res. Part A: Policy Pract.
,
40
(
7
), pp.
537
560
.10.1016/j.tra.2005.11.003
13.
Jenelius
,
E.
, and
Mattsson
,
L. G.
,
2015
, “
Road Network Vulnerability Analysis: Conceptualization, Implementation and Application
,”
Comput., Environ. Urban Syst.
,
49
(
1
), pp.
136
147
.10.1016/j.compenvurbsys.2014.02.003
14.
Nelson
,
K. S.
,
Gillespie-Marthaler
,
L.
,
Baroud
,
H.
,
Abkowitz
,
M.
, and
Kosson
,
D. S.
,
2020
, “
An Integrated and Dynamic Framework for Assessing Sustainable Resilience in Complex Adaptive Systems
,”
Sustainable Resilient Infrastruct.
,
5
(
5
), pp.
311
329
.10.1080/23789689.2019.1578165
15.
Bensi
,
M.
,
Kiureghian
,
K. D.
, and
Straub
,
D.
,
2011
, “
Bayesian Network Modeling of Correlated Random Variables Drawn From a Gaussian Random Field
,”
Struct. Saf.
,
33
(
6
), pp.
317
332
.10.1016/j.strusafe.2011.05.001
16.
Saadat
,
Y.
,
2021
, “
Enhancing Resilience of Infrastructure Networks: Washington, DC Urban. Rail Transit as a Case Study
,” Doctoral dissertation, University of Maryland, College Park, MD.
17.
Piacenza
,
J. R.
,
Proper
,
S.
,
Bozorgirad
,
M.
,
Hoyle
,
C.
, and
Tumer
,
I. Y.
,
2017
, “
Robust Topology Design of Complex Infrastructure Systems
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
2
), p.
021006
.10.1115/1.4036152
18.
Scherb
,
A.
,
Garre
,
L.
, and
Straub
,
D.
,
2017
, “
Reliability and Component Importance in Networks Subject to Spatially Distributed Hazards Followed by Cascading Failures
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
3
(
2
), p.
021007
.10.1115/1.4036091
19.
Coar
,
M.
,
Garlock
,
M.
, and
Khorasani
,
N. E.
,
2020
, “
Effects of Water Network Dependency on the Electric Network for Post-Earthquake Fire Suppression
,”
Sustainable Resilient Infrastruct.
,
5
(
5
), pp.
269
288
.10.1080/23789689.2018.1563408
20.
Albert
,
R.
,
Albert
,
I.
, and
Nakarado
,
G. L.
,
2004
, “
Structural Vulnerability of the North American Power Grid
,”
Phys. Rev. E
,
69
(
2
), p.
025103
.10.1103/PhysRevE.69.025103
21.
Wang
,
J. W.
, and
Rong
,
L. L.
,
2009
, “
Cascade-Based Attack Vulnerability on the US Power Grid
,”
Saf. Sci.
,
47
(
10
), pp.
1332
1336
.10.1016/j.ssci.2009.02.002
22.
Winkler
,
J.
,
Duenas-Osorio
,
L.
,
Stein
,
R.
, and
Subramanian
,
D.
,
2010
, “
Performance Assessment of Topologically Diverse Power Systems Subject to Hurricane Events
,”
Reliab. Eng. Syst. Saf.
,
95
(
4
), pp.
323
336
.10.1016/j.ress.2009.11.002
23.
Ezzeldin
,
M.
, and
El-Dakhakhni
,
W. E.
,
2021
, “
Robustness of Ontario Power Network Under Systemic Risks
,”
Sustainable Resilient Infrastruct.
,
6
(
3–4
), pp.
252
271
.10.1080/23789689.2019.1666340
24.
Simone
,
A.
,
Ridolfi
,
L.
,
Beradi
,
L.
, and
Laucelli
,
D. B.
,
2018
, “
Complex Network Theory for Water Distribution Networks Analysis
,” Proceedings of the 13th International Conference of Hydroinformatics, Palermo, Italy, July 1–6, Vol.
3
, pp.
1971
1978
.
25.
Wu
,
J. J.
,
Gao
,
Z. Y.
, and
Sun
,
H. J.
,
2007
, “
Effects of the Cascading Failures on Scale-Free Traffic Networks
,”
Phys. A
,
378
(
2
), pp.
505
511
.10.1016/j.physa.2006.12.003
26.
Zhang
,
J.
,
Cao
,
X. B.
,
Du
,
W. B.
, and
Cai
,
K. Q.
,
2010
, “
Evolution of Chinese Airport Network
,”
Phys. A
,
389
(
18
), pp.
3922
3931
.10.1016/j.physa.2010.05.042
27.
Holme
,
P.
,
Kim
,
B. J.
,
Yoon
,
C. N.
, and
Han
,
S. K.
,
2002
, “
Attack Vulnerability of Complex Networks
,”
Phys. Rev. E
,
65
(
5
), pp.
105
109
.10.1103/PhysRevE.65.056109
28.
Laporte
,
G.
,
Mesa
,
J. A.
, and
Perea
,
F.
,
2010
, “
A Game Theoretic Framework for the Robust Railway Transit Network Design Problem
,”
Transp. Res. Part B: Methodol.
,
44
(
4
), pp.
447
459
.10.1016/j.trb.2009.08.004
29.
Lin
,
J.
, and
Ban
,
Y.
,
2013
, “
Complex Network Topology of Transportation Systems
,”
Transp. Rev.
,
33
(
6
), pp.
658
685
.10.1080/01441647.2013.848955
30.
Deng
,
Y.
,
Li
,
Q. M.
,
Lu
,
Y.
, and
Yuan
,
J. F.
,
2013
, “
Topology Vulnerability Analysis and Measure of Urban Metro Network: The Case of Nanjing
,”
J. Network
,
8
(
6
), pp.
1350
1356
.10.4304/jnw.8.6.1350-1356
31.
Zhang
,
J.
,
Wang
,
S.
, and
Wang
,
X.
,
2018
, “
Comparison Analysis on Vulnerability of Metro Networks Based on Complex Network
,”
Phys. A
,
496
, pp.
72
78
.10.1016/j.physa.2017.12.094
32.
Saadat
,
Y.
,
Ayyub
,
B. M.
,
Zhang
,
Y.
,
Zhang
,
D.
, and
Huang
,
H.
,
2019
, “
Resilience of Metrorail Networks: Quantification With Washington, DC as a Case Study
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
5
(
4
), p.
041011
.10.1115/1.4044038
33.
Bagler
,
G.
,
2008
, “
Analysis of the Airport Network of India as a Complex Weighted Network
,”
Phys. A
,
387
(
12
), pp.
2972
2980
.10.1016/j.physa.2008.01.077
34.
Sun
,
D. J.
, and
Shituo
,
G.
,
2016
, “
Measuring Vulnerability of Urban Metro Network From Line Operation Perspective
,”
Transp. Res. Part A: Policy Pract.
,
94
(
C
), pp.
348
359
.10.1016/j.tra.2016.09.024
35.
Feng
,
J.
,
Li
,
X.
,
Mao
,
B.
,
Xu
,
Q.
, and
Bai
,
Y.
,
2017
, “
Weighted Complex Network Analysis of the Beijing Subway System: Train and Passenger Flows
,”
Phys. A
,
474
, pp.
213
223
.10.1016/j.physa.2017.01.085
36.
Kerner
,
B. S.
, and
Klenov
,
S. L.
,
2004
, “
Spatial–Temporal Patterns in Heterogeneous Traffic Flow With a Variety of Driver Behavioral Characteristics and Vehicle Parameters
,”
Phys. A
,
37
, pp.
8753
8788
.10.1088/0305-4470/37/37/001
37.
Ahas
,
R.
,
Aasa
,
A.
,
Silm
,
S.
, and
Tiru
,
M.
,
2010
, “
Daily Rhythms of Suburban Commuters' Movements in the Tallinn Metropolitan Area: Case Study With Mobile Positioning Data
,”
Trans. Res. Part C-Emerging Technol.
,
18
(
1
), pp.
45
54
.10.1016/j.trc.2009.04.011
38.
Gao
,
S.
,
Wang
,
Y.
,
Gao
,
Y.
, and
Liu
,
Y.
,
2013
, “
Understanding Urban Traffic-Flow Characteristics: A Rethinking of Betweenness Centrality
,”
Environ. Plann. B
,
40
(
1
), pp.
135
153
.10.1068/b38141
39.
Li
,
L.
,
Li
,
Y.
, and
Li
,
Z.
,
2013
, “
Efficient Missing Data Imputing for Traffic Flow by Considering Temporal and Spatial Dependence
,”
Transp. Res., Part C-Emerging Technol.
,
34
, pp.
108
120
.10.1016/j.trc.2013.05.008
40.
Anbaroğlu
,
B.
,
Cheng
,
T.
, and
Heydecker
,
B.
,
2015
, “
Non-Recurrent Traffic Congestion Detection on Heterogeneous Urban Road Networks
,”
Transportmetrica A
,
11
(
9
), pp.
754
771
.10.1080/23249935.2015.1087229
41.
Wu
,
Y.
,
Chen
,
F.
,
Lu
,
C.
, and
Yang
,
S.
,
2016
, “
Urban Traffic Flow Prediction Using a Spatiotemporal Random Effects Model
,”
Intell. Transp. Syst.
,
20
(
3
), pp.
282
293
.10.1080/15472450.2015.1072050
42.
Kurant
,
M.
, and
Thiran
,
P.
,
2006
, “
Extraction and Analysis of Traffic and Topologies of Transportation Networks
,”
Phy. Rev. E
,
74
, p.
036114
.10.1103/PhysRevE.74.036114
43.
Liu
,
Y.
,
Jia
,
R.
,
Ye
,
J.
, and
Qu
,
X.
,
2022
, “
How Machine Learning Informs Ride-Hailing Services: A Survey
,”
Commun. Transp. Res.
,
2
, p.
100075
.10.1016/j.commtr.2022.100075
44.
Wang
,
W.
, and
Wu
,
Y.
,
2021
, “
Is Uncertainty Always Bad for the Performance of Transportation Systems?
,”
Commun. Transp. Res.
,
1
, p.
100021
.10.1016/j.commtr.2021.100021
45.
Newman
,
M. E. J.
,
2004
, “
Analysis of Weighted Networks
,”
Phys. Rev. Lett.
,
70
, p.
056131
.10.1103/physreve.70.056131
46.
Guidotti
,
R.
,
Gardoni
,
P.
, and
Chen
,
Y.
,
2017
, “
Network Reliability Analysis With Link and Nodal Weights and Auxiliary Nodes
,”
Struct. Saf.
,
65
, pp.
12
26
.10.1016/j.strusafe.2016.12.001
47.
Floyd
,
R. W.
,
1962
, “
Algorithm 97 (Shortest Path)
,”
Commun. ACM
,
5
(
6
), pp.
345
345
.10.1145/367766.368168
48.
Zhang
,
D.
,
Du
,
F.
,
Huang
,
H.
,
Zhang
,
F.
,
Ayyub
,
B. M.
, and
Beer
,
M.
,
2018
, “
Resiliency Assessment Model of Urban Rail Transit Networks: Shanghai Metro as an Example
,”
Saf. Sci.
,
106
, pp.
230
243
.10.1016/j.ssci.2018.03.023
49.
Bruneau
,
M.
,
Chang
,
S. E.
,
Eguchi
,
R. T.
,
Lee
,
G. C.
,
O'Rourke
,
T. D.
,
Reinhorn
,
A. M.
,
Shinozuka
,
M.
,
Tierney
,
K.
,
Wallace
,
W. A.
, and
Von Winterfeldt
,
D.
,
2003
, “
A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities
,”
Earthquake Spectra
,
19
(
4
), pp.
733
752
.10.1193/1.1623497
50.
Ayyub
,
B. M.
,
2014
, “
System Resilience for Multi Hazard Environments: Definition, Metrics, and Valuation for Decision Making
,”
Risk Anal. J.
,
34
(
2
), pp.
340
355
.10.1111/risa.12093
51.
Saadat
,
Y.
,
Ayyub
,
B. M.
,
Zhang
,
Y.
,
Zhang
,
D.
, and
Huang
,
H.
,
2020
, “
Resilience-Based Strategies for Topology Enhancement and Recovery of Metrorail Transit Networks
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
6
(
2
), p.
04020017
.10.1061/AJRUA6.0001057
52.
FEMA (Federal Emergency Management Agency),
2013
, “
Mitigation Assessment Team Report: Hurricane Sandy in New Jersey and New York Building Performance Observation
,” Recommendation and Technical Guidance, FEMA, U.S., Report No. FEMA P-942.
53.
Washington, DC Metro,
2018
, “Fiscal Year (FY) Budget,” Office of the Chief Financial Officer, Washington, DC, accessed Oct. 31, 2018, https://www.wmata.com/about/records/public_docs/upload/Metro_FY2018_Proposed_Budget_15Dec16_v4.pdf
54.
American Public Transportation,
2016
, “
Transit Ridership Report Fourth Quarter
,” American Public Transportation Association, Washington, DC, accessed Oct. 31, 2018, http://www.apta.com/resources/statistics/Pages/ridershipreport.aspx
55.
WMATA (Washington Metropolitan Area Transit Authority)
,
2016
, “Historical Rail Ridership,” Washington Metro Transit, Washington, DC, accessed Oct. 31, 2018, https://www.wmata.com/initiatives/plans/upload/2016_historical_rail_ridership.pdf
56.
Watts
,
D. J.
, and
Strogatz
,
S. H.
,
1998
, “
Collective Dynamics of ‘Small-World’ Networks
,”
Nature
,
393
(
6684
), pp.
440
442
.10.1038/30918
57.
Sen
,
P.
,
Dasgupta
,
A.
,
Sreeam
,
P.
,
Mukherjee
,
G.
, and
Manna
,
S. S.
,
2003
, “
Small-World Properties of the Indian Railway Network
,”
Phys. Rev.
,
E67
, p.
036106
.10.1103/PHYSREVE.67.036106
58.
Barabási
,
A.-L.
, and
Albert
,
R.
,
1999
, “
Emergence of Scaling in Random Networks
,”
Science
,
286
(
5439
), pp.
509
512
.10.1126/science.286.5439.509
59.
Newman
,
M. E. J.
,
2010
, “
The Large Scale Structure of Networks
,”
Networks an Introduction
,
Oxford University Press
,
New York
, pp.
99
166
.
You do not currently have access to this content.