Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: sliding friction
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
J. Pressure Vessel Technol. April 2012, 134(2): 021801.
Published Online: January 25, 2012
... , “ Multiple Yield and Bounding Surfaces Model for Analysis of Multiple Friction Pendulum System ,” In the 2009 ASME Pressure Vessels and Piping Conference , Seismic Engineering, Paper No. PVP2009-77307 . damping earthquake engineering machine bearings pendulums sliding friction structural...
Abstract
In this paper, a base isolator called a multiple direction optimized-friction pendulum system (Multiple DO-FPS) with numerous sliding interfaces is proposed. To understand the mechanical behavior of the Multiple DO-FPS isolator under multidirectional excitations, an analytical model called the multiple yield and bounding surfaces model is proposed. On the basis of the derived mathematical formulations for simulation of the characteristics of the Multiple DO-FPS isolation bearing, it is revealed that the natural period and damping effect of the Multiple DO-FPS isolator are a function of the sliding displacement and sliding direction. By virtue of the proposed model, the phenomena of the sliding motions of the Multiple DO-FPS isolator with numerous sliding interfaces subjected to multidirectional excitations can be understood in a simple manner. The analytical results indicate that the natural frequency and damping effect of the Multiple DO-FPS isolator with numerous concave sliding interfaces change continually during earthquakes and are controllable through appropriate designs.