Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 143
Excitation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. August 2021, 143(4): 041405.
Paper No: PVT-20-1252
Published Online: February 11, 2021
Abstract
The flow-excited acoustic resonance phenomenon, which is instigated by periodic flow perturbation, leads to the generation of acute sound pressure. In this work, we investigated the characteristics of the flow-excited acoustic resonance for circular finned cylinders with different fin heights. The fin height is expressed as a normalized form considering the ratio of the fin diameter to the root cylinder diameter. The experiments are performed with finned cylinders having a range of diameter ratios between 1.5 < D f / D r < 2.5 . The diameter ratios are varied by changing the root diameter and fin diameter separately as well as simultaneously while keeping the fin pitch and the fin thickness constant. The results show that the excitation of acoustic resonance has profound dependence on the diameter ratio. Increasing the diameter ratios of the finned cylinder results in strong acoustic resonance excitation. The lock-in width and the onset of the acoustic resonance excitation also depend on the diameter ratio of the cylinders. Moreover, the results show that using an effective diameter based on the geometrical flow blockage does not take into account the changes occurring in the source of resonance excitation due to the addition of fins.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2021, 143(2): 021405.
Paper No: PVT-20-1107
Published Online: October 5, 2020
Abstract
The aeroacoustic response of two tandem spirally finned cylinders is experimentally investigated. Three different pairs of finned cylinders are studied with fin pitch-to-root diameter ratios ( p / D r ) ranging between 0.37 ≤ p / D r ≤ 0.74 . The spiral fins are crimped similar to those used in industrial heat exchangers. The results of the finned cylinders are compared with bare, circular cylinders with a modified equivalent diameter (D eq ). The spacing ratio ( L / D eq ) between the cylinders are kept constant at L / D eq = 2.00 . The Strouhal number (St D eq ) of the tandem finned cylinders is found to be higher compared to the tandem bare cylinders, resulting in an earlier onset of coincidence resonance. Moreover, unlike the tandem bare cylinders, the Strouhal number of the finned cylinders did not depend on the Reynolds number, suggesting that the flow characteristics around the finned cylinders are unaffected by Reynolds number. Only the tandem finned cylinders with the lowest fin pitch-to-root diameter ratio ( p / D r = 0.37 ) were capable of exciting precoincidence acoustic resonance. The precoincidence resonance mechanism is similar to that observed in in-line tube bundles.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2021, 143(2): 021404.
Paper No: PVT-20-1059
Published Online: October 5, 2020
Abstract
Flow-excited acoustic resonance is a design concern in many industrial applications. If not treated, it may lead to excessive vibrational loads, which could subsequently result in premature structural failure of critical equipment. For the case of tube bundles in heat exchangers, several acoustic damping criteria were proposed in the literature to predict the occurrence of resonance excitation. However, these criteria, in some cases, are not reliable in differentiating between the resonant and nonresonant cases. A primary reason for that is the geometrical differences between reduced scale models and full-scale tube bundles, and their effect on the flow-sound interaction mechanism. Therefore, the effect of two geometrical aspects, namely, the duct height and the cylinder diameter, on the self-excited acoustic resonance for single cylinders in cross-flow is experimentally investigated in this work. Changing the duct height changes the natural frequency of the excited acoustic modes and the duct's acoustic damping and radiation losses. Changing the cylinder diameter changes the flow velocity at frequency coincidence, the pressure drop, and Reynolds number. It is found that increasing the duct height decreases the acoustic impedance, which makes the system more susceptible to resonance excitation. This, in turn, changes the magnitude of the acoustic pressure at resonance, even for cases where the dynamic head of the flow is kept constant. The acoustic attenuation due to visco-thermal losses is quantified theoretically using Kirchhoff's acoustical damping model, which takes into account the geometrical aspects of the different ducts. Results from the experiments are compared with the acoustic damping criteria from the literature for similar cases. It is revealed that the height of the duct is an important parameter that should be included in damping criteria proposed for tube bundles of heat exchangers, as it controls the acoustic damping and radiation losses of the system, which have been over-looked in the past.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2021, 143(2): 021401.
Paper No: PVT-18-1192
Published Online: October 5, 2020
Abstract
A 1:4 scale seismic simulation shaking table experiment was designed and performed to study the sloshing wave height response of a storage tank under displacement due to seismic excitation, wherein a 1000 m 3 vertical storage tank was used to compare the sloshing wave height for different tanks with different foundations. Under different foundation forms, the tank motion includes sway and roll. Meanwhile, the design code and finite element method were used to compare with the experiment for mutual verification. The results show that the peak value of the sloshing wave height is at its minimum at the center, and the maximum is near the tank wall when the model tank was excited to the ground motion with the predominant frequency range from 0.29 and 0.32 Hz, and the floating roof can significantly reduce the sloshing wave height. For different input conditions with equivalent seismic magnitude, the wave heights were notably different, so the design should use multiple seismic waves as inputs. The acceleration values were different when different foundations were used, but there was little effect on the sloshing wave height. Besides, the sloshing wave heights measured in the experiment were close to those calculated using standard equations and finite element results, which proves that the three can verify each other.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2020, 142(2): 021403.
Paper No: PVT-19-1098
Published Online: November 28, 2019
Abstract
Acoustic pressure pulsations can be problematic in industrial pipelines, especially when the excitation frequency matches an acoustic resonance frequency of the pipeline. The objective of this paper is to investigate the effectiveness of Helmholtz resonators (HRs) in multiple arrangements on the attenuation of acoustic pressure pulsations in piping systems. In a resonant pipeline (i.e., an acoustic standing wave scenario), maximal attenuation is achieved when the HR is inserted at the acoustic pressure antinode. The insertion loss (IL) in an off-resonant system is found to be relatively consistent, unless there is a coupling between the HR and the downstream end termination in which case there is a decrease in attenuation. Multiple, small-volume HRs in various configurations can achieve the same level of damping as that of a single HR with the same total volume. Moreover, it is shown that the use of multiple HRs placed at strategic spacing intervals along the length of a pipeline can yield significant acoustic damping, without the need for characterizing the acoustic waves in the pipeline system. An axial spacing of a quarter wavelength of the frequency of interest between multiple HRs is shown to increase the peak attenuation, which is indicative of a favorable coupling between HRs. The effect of flow velocity and its directionality with respect to the sound source is also investigated. The results presented in this paper provide practical techniques that can be used for the implementation of HR in pipeline systems.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. October 2019, 141(5): 051301.
Paper No: PVT-19-1060
Published Online: July 17, 2019
Abstract
Excitation of acoustic resonance by flow over tube bundles in heat exchangers can cause hazardous levels of acoustic pressure that may pose operational and environmental risks. The previous studies have indicated that inline arrangements of cylinders excite acoustic resonance of a nature different from that of a single cylinder. In this work, the excitation of acoustic resonance by cross-flow around inline arrangements of cylinders is experimentally investigated to identify the role of critical parameters on resonance characteristics. Results show that flow around inline tube bundles can excite acoustic resonance due to periodic flow oscillations over the cavity formed between successive cylinders rather than periodic wake phenomena. Based on precoincidence resonance characteristics, a criterion is introduced to predict the occurrence of acoustic resonance in inline arrangements of cylinders. The proposed parametric criterion does not only identify the potential for resonance excitation for inline arrangements of cylinders experimentally investigated in this work but it also provides a method to separate resonant from nonresonant cases for inline tube bundle data from the literature.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. August 2019, 141(4): 041401.
Paper No: PVT-18-1045
Published Online: May 8, 2019
Abstract
The bimetal composite pipe has found wide ranging applications in engineering owing to its excellent mechanical and physical performances. However, the interlaminar cracks which are usually invisible and inaccessible may occur in the bimetal composite pipe and are difficult to detect. The ultrasonic interface wave, which propagates along the interface with high displacement amplitudes and low dispersion at high frequencies, provides a promising nondestructive testing (NDT) method for detecting cracks in the bimetal composite pipe. In this study, the interlaminar crack detection method in the steel–titanium composite pipe is investigated analytically and experimentally by using interface wave. The interface wave mode in steel–titanium composite pipe is first identified and presented by theoretical analyses of dispersion curves and wave structures. The selection of suitable excitation frequency range for NDT is discussed as well. Then an experiment is conducted to measure the interface wave velocities, which are in good agreement with the corresponding numerical results. In addition, interlaminar cracks with different locations in steel–titanium composite pipe are effectively detected and located, both in the axial and circumferential directions. Finally, the relationship between the reflection coefficient and the crack depth is experimentally studied to predict the reflection behavior of interface wave with crack. The numerical and experimental results show the interface wave is sensitive to interfacial crack and has great potentials for nondestructive evaluation in the bimetal composite pipe.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. August 2019, 141(4): 041801.
Paper No: PVT-18-1130
Published Online: May 8, 2019
Abstract
The behavior of aboveground storage tanks subjected to seismic excitation was investigated using numerical methods by taking flexibility of foundation into account. The hydrostatic load due to stored liquid has an axisymmetric distribution on the tank shell and base. However, during seismic events, the hydrodynamic load originating from the seismic acceleration of liquid in the tank starts to act in the direction of the earthquake motion. This leads to a nonaxisymmetric loading distribution, which may result in buckling and uplifting of the tank structure. Finite element models were created having nonlinear material properties and large deformation capabilities. Three different tank geometries with liquid height to tank radius aspect ratios of 0.67, 1.0, and 3.0 were selected representing broad, nominal, and slender tanks. These tanks were subjected to two different hydrodynamic loading based on Housner's and Jacobsen–Veletsos' pressure distributions, which forms the basis of design provisions used in American Petroleum Institute API 650 and Eurocode 8, respectively. These pressure distributions were formulated under the assumption of rigid tank wall and base. Furthermore, each tank for a given geometry was subjected to two different foundations: (1) representing a rigid foundation and (2) representing a flexible foundation. The flexible foundation was created using a series of compression-only elastic springs attached to tank base having equivalent soil stiffness. Static analysis corresponding to maximum dynamic force was performed. The finite element results for circumferential and longitudinal stress in the shell were compared with the provisions of API 650. It was found that the effect of foundation flexibility from the practical design point of view may be neglected for broad tanks, but should be considered for nominal and slender tanks.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. June 2018, 140(3): 031304.
Paper No: PVT-17-1233
Published Online: April 25, 2018
Abstract
The interaction of a cavity shear layer with the sound field of an acoustic mode can generate an aeroacoustic source which is capable of initiating and sustaining acoustic resonances in the duct housing the cavity. This aeroacoustic source is determined experimentally for an internal axisymmetric cavity exposed to high Reynolds number, fully developed turbulent pipe flow without the need to resolve the details of neither the unsteady flow field nor the flow-sound interaction process at the cavity. The experimental technique, referred to here as the standing wave method (SWM), employs six microphones distributed upstream and downstream of the cavity to evaluate the fluctuating pressure difference generated by the oscillating cavity shear layer in the presence of an externally imposed sound wave. The results of the aeroacoustic source are in good agreement with the concepts of free shear layer instability and the fluid-resonant oscillation behavior. The accuracy of the measurement technique is evaluated by means of sensitivity tests. In addition, the measured source is used to predict the self-excited acoustic resonance of a shallow cavity in a pipeline. Comparison of the predicted and measured results shows excellent prediction of the self-excited acoustic resonance, including the resonance frequency, the lock-in velocity range, and the amplitude of the self-generated acoustic resonance.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. June 2018, 140(3): 031801.
Paper No: PVT-17-1118
Published Online: April 10, 2018
Abstract
The uniform response spectrum (URS) analysis method is generally used to seismic qualification of piping systems in nuclear power plants (NPPs). This method can reasonably not only compute dynamic responses of the piping systems exposed to different seismic motions from the building but also tend to overestimate the responses due to an assumption while conservatively considering a variety of the characteristic among input loadings. Increases of design seismic motions for NPPs in Japan by 2–3 times due to the 2011 off Pacific Coast of Tohoku Earthquake resulted that structures, systems, and components such as piping systems are subject to numbers of additional supporting structures to meet the design code requirements. Use of multiple-input analysis methods (independent support motion methods) is expected to bring high degree of precision in dynamic responses than the URS method. However, existence of a handful of experimental tests prevents from utilizing the method in the design process for NPPs in Japan. In order to practically utilize the multiple-input analysis methods in the plant design, this paper provides validation analyses and results for the multiple-input analysis methods for piping by conducting excitation tests and validation analyses. Some recommendations were also found in the study for seismic design of NPPs.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. June 2018, 140(3): 031301.
Paper No: PVT-17-1167
Published Online: April 2, 2018
Abstract
Flow-induced vibrations of tubes in two-phase heat exchangers are a concern for the nuclear industry. Electricité de France (EDF) has developed a numerical tool, which allows one to evaluate safety margins and thereafter to optimize the exchanger maintenance policy. The software is based on a semi-analytical model of fluid-dynamic forces and dimensionless fluid force coefficients which need to be evaluated by experiment. A test rig was operated with the aim of assessing parallel triangular tube arrangement submitted to a two-phase vertical cross-flow: a kernel of nine flexible tubes is set in the middle of a rigid bundle. These tubes vibrate as solid bodies (in translation) both in the lift and drag directions in order to represent the so-called in-plane and out-of-plane vibrations. This paper outlines the experimental results and some detailed physical analysis of some selected points of the experiment series: the response modes are identified by means of operational modal analysis (OMA) (i.e., under unmeasured flow excitation) and presented in terms of frequency, damping, and mode shapes. Among all the modes theoretically possible in the bundle, it was found that some of them have a higher response depending on the flow velocity and the void fraction. Mode shapes allow to argue if lock-in is present and to clarify the role of lift and drag forces close to the fluid-elastic instability (FEI).
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2018, 140(2): 021204.
Paper No: PVT-17-1211
Published Online: February 22, 2018
Abstract
In the present work, inelastic dynamic behavior of a pressurized stainless steel elbow is studied under harmonic base excitation with the emphasis on strain accumulation known as ratcheting. Initially, sine sweep test is carried out on the long radius stainless steel (SS 304L) elbow to evaluate the free vibration characteristics. Then, incremental harmonic base excitation with the first resonant frequency is applied to the elbow till failure and the resulting response is studied. The tested elbow is analyzed using a simplified method and the simulated ratcheting strain is compared with experimental results. The effect of thickness variation in the elbow on strain accumulation is also studied. Levels of base excitation corresponding to different failure criteria are evaluated and the details are provided in the paper.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. December 2017, 139(6): 061302.
Paper No: PVT-17-1026
Published Online: October 4, 2017
Abstract
The simple tube and channel theoretical model for fluidelastic instability (FEI) in tube arrays, as developed by Hassan and Weaver, has been used to study the effects of pitch ratio and mass ratio on the critical velocity of parallel triangular tube arrays. Simulations were carried out considering fluidelastic forces in the lift and drag directions independently and acting together for cases of a single flexible tube in a rigid array and a fully flexible kernel of seven tubes. No new empirical data were required using this model. The direction of FEI as well as the relative importance of fluid coupling of tubes was studied, including how these are affected by tube pitch ratio and mass ratio. The simulation predictions agree reasonably well with available experimental data. It was found that parallel triangular tube arrays are more vulnerable to streamwise FEI when the pitch ratio is small and the mass-damping parameter (MDP) is large.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. December 2017, 139(6): 061802.
Paper No: PVT-17-1018
Published Online: October 4, 2017
Abstract
The accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) resulting from the 2011 Great East Japan Earthquake raised awareness as to the importance of considering Beyond Design Basis Events (BDBE) when planning for safe management of NPPs. In considering BDBE, it is necessary to clarify the possible failure modes of structures under extreme loading. Because piping systems are one of the representative components of NPPs, an experimental investigation was conducted on the failure of a pipe assembly under simulated excessive seismic loads. The failure mode obtained by excitation tests was mainly fatigue failure. The reduction of the dominant frequency and the increase of hysteresis damping were clearly observed in high-level input acceleration due to plastic deformation, and they greatly affected the specimens’ vibration response. Based on the experimental results, a procedure is proposed for calculating experimental stress intensities based on excitation test so that they can be compared with design limitations.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. December 2017, 139(6): 061801.
Paper No: PVT-17-1092
Published Online: September 26, 2017
Abstract
This article presents the experimental and numerical studies of fatigue-ratcheting in carbon steel piping systems under internal pressure and earthquake load. Shake table tests are carried out on two identical 6 in pressurized piping systems made of carbon steel of grade SA333 Gr 6. Tests are carried out using similar incremental seismic load till failure. Wavelet analysis is carried to evaluate frequency change during testing. The tested piping systems are analyzed using iterative response spectrum (IRS) method, which is based on fatigue-ratcheting and compared with test results. Effect of thickness variation in elbow on strain accumulation is studied. Excitation level for fatigue-ratcheting failure is also evaluated and the details are given in this paper.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. August 2017, 139(4): 041302.
Paper No: PVT-16-1247
Published Online: April 24, 2017
Abstract
Natural gas is relatively clean, and its demand is currently increasing. In most cases, gas fields are located at the bottom of the sea. Therefore, floating production, storage, and offloading (FPSO) systems are now attracting considerable attention. This paper is related to the dynamical design of a FPSO system; in particular, it focuses on the free surface elevation induced by the waves in a horizontal cylindrical and axisymmetric liquid vessel with end caps. In this study, the theory of the wave height and resonant frequency in a horizontal cylinder subjected to pitching via external excitation is developed. Then, a theory taking into account the effect of perforated plates is introduced. A special discussion is made with regard to the number and location of the perforated plates and the effect of a partial opening in a perforated plate on the damping. Finally, the experimental data of resonant wave heights up to the third mode are shown in comparison to the theoretically derived results.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. June 2017, 139(3): 031307.
Paper No: PVT-16-1154
Published Online: January 11, 2017
Abstract
Fluid excitation forces acting on stationary cylinders with cross-flow are the coupling of vortex shedding and turbulence buffeting. Those forces are significant in the analytical framework of fluid-induced vibration in heat exchangers. A bench-scale experimental setup with an instrumented test bundle is constructed to measure fluid excitation forces acting on cylinders in the normal triangular tube arrays (P/D = 1.28) with water cross-flow. The lift and drag forces on stationary cylinders are measured directly as a function of Reynolds number with a developed piezoelectric transducer. The results show that the properties of fluid excitation forces, to a great extent, largely depend upon the locations of cylinders within bundle by comparison to the inflow variation. A quasi-periodic mathematical model of fluid excitation forces acting on a circular cylinder is presented for a tightly packed tube bundle subjected to cross-flow, and the bounded noise theory is applied between f R = 0.01 and f R = 1. The developed model is illustrated with lots of identification results based on the dominant frequency, the intensity of random frequency, and the amplitude of fluid excitation forces. A second model has been developed for fluid excitation forces between f R = 1 and f R = 6 with the spectrum index introduced. Although still preliminary, each model can predict the corresponding forces relatively well.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2017, 139(2): 021209.
Paper No: PVT-15-1225
Published Online: September 29, 2016
Abstract
A hybrid friction model has been developed by Azizian and Mureithi (2013, “A Hybrid Friction Model for Dynamic Modeling of Stick–Slip Behavior,” ASME Paper No. PVP2013-97249) to simulate the general friction behavior between surfaces in contact. However, identification of the model parameters remains an unresolved problem. To identify the parameters of the friction model, the following quantities are required: contact forces (normal and tangential or friction forces), the slip velocity, and the displacement in the contact region. Simultaneous direct measurement of these quantities is difficult. In the present work, a beam clamped at one end and simply supported with the consideration of friction at the other is used as a mechanical amplifier of the friction effects at the microscopic level. Using this simplified approach, the contact forces, the sliding velocity, and the displacement can be indirectly obtained by measuring the beam vibration response. The inverse harmonic balance method is a new method based on nonlinear modal analysis which is developed in this work to calculate the contact forces. The method is based on the modal superposition principle and Fourier series expansion. Two formulations are possible: a harmonic form formulation and a subharmonic form formulation. The approach based on subharmonic forms coupled with spline fitting gave the best results for signal reconstruction. Signal reconstruction made it possible to accurately identify the parameters of the hybrid friction model with a multiple step approach.
Journal Articles
Article Type: Research-Article
J. Pressure Vessel Technol. April 2017, 139(2): 021302.
Paper No: PVT-16-1041
Published Online: September 27, 2016
Abstract
The transient sloshing in laterally excited horizontal elliptical containers with T-shaped baffles is first investigated by using a novel semi-analytical scaled boundary finite-element method (SBFEM). The proposed method combines the advantages of the finite-element and the boundary element methods (BEMs) with unique properties of its own, in which a new coordinate system including the circumferential local coordinate and the radial coordinate has been established. Only the boundary of the computational domain needs to be discretized in the circumferential direction as the same as the BEM and the solution in the radial direction is analytical. Assuming ideal, irrotational flow and small-amplitude free-surface elevation, the formulations (using a new variational principle formulation) and solutions of SBFEM equations for an eigenvalue problem under zero external excitation (free sloshing problem) are derived in detail. Subsequently, based on an appropriate decomposition of the container-fluid motion, and considering the eigenvalues and eigenmodes of the above eigenvalue problem, an efficient methodology is proposed for externally induced sloshing through the calculation of the corresponding sloshing masses and liquid motion. Several numerical examples are presented to demonstrate the simplicity, versatility, and applicability of the SBFEM during the simulation of sloshing problems of complex containers, and excellent agreement with the other methods is observed. Meanwhile, three T-shaped baffle configurations are considered including surface-piercing baffle, bottom-mounted baffle and their combination form, and Y-shaped configuration evolved from that of T-shaped baffle has been taken into consideration as well. The liquid fill level, arrangement and length of those baffles affecting the sloshing masses, and liquid motion are investigated in detail. The results also show that the present method can easily solve the singularity problems analytically by choosing the scaling center at the tip of the baffles and allows for the simulation of complex sloshing phenomena using far less number of degrees-of-freedom.
Journal Articles
Article Type: Review Articles
J. Pressure Vessel Technol. August 2016, 138(4): 040803.
Paper No: PVT-15-1168
Published Online: April 28, 2016
Abstract
Flow-excited resonances of acoustic trapped modes in ducted shallow cavities are reviewed in this paper. The main components of the feedback mechanism which sustains the acoustic resonance are discussed with particular emphasis on the complexity of the trapped mode shapes and the strong three-dimensionality of the cavity flow oscillations during the resonance. Due to these complexities of the flow and sound fields, it is still difficult to theoretically or numerically model the interaction mechanism which sustains the acoustic resonance. Strouhal number and resonance amplitude charts are therefore included to help designers avoid the occurrence of resonance in new installations, and effective countermeasures are provided which can be implemented to suppress trapped mode resonances in operating plants.