Skip Nav Destination
Issues
May 1983
ISSN 0094-9930
EISSN 1528-8978
In this Issue
Editorial
Technical Editor’s Page
J. Pressure Vessel Technol. May 1983, 105(2): 99–100.
doi: https://doi.org/10.1115/1.3264263
In Memoriam
In Memoriam
J. Pressure Vessel Technol. May 1983, 105(2): 101.
doi: https://doi.org/10.1115/1.3264249
Research Papers
Fracture Mechanics Data Deduced From Thermal-Shock and Related Experiments With LWR Pressure Vessel Material
R. D. Cheverton, D. A. Canonico, S. K. Iskander, S. E. Bolt, P. P. Holz, R. K. Nanstad, W. J. Stelzman
J. Pressure Vessel Technol. May 1983, 105(2): 102–110.
doi: https://doi.org/10.1115/1.3264250
An Analysis of Dynamic Crack Propagation and Arrest in a Nuclear Pressure Vessel Under Thermal Shock Conditions
J. Pressure Vessel Technol. May 1983, 105(2): 111–116.
doi: https://doi.org/10.1115/1.3264251
Stress Intensity Factors for Radial Cracks in a Pre-Stressed, Thick-Walled Cylinder of Strain-Hardening Materials
J. Pressure Vessel Technol. May 1983, 105(2): 117–123.
doi: https://doi.org/10.1115/1.3264252
Topics:
Cylinders
,
Fracture (Materials)
,
Stress
,
Work hardening
,
Pressure
,
Compressibility
,
Fatigue
,
Finite element analysis
,
Manufacturing
,
Residual stresses
An Analysis of Dynamic Fracture in an Impact Test Specimen
J. Pressure Vessel Technol. May 1983, 105(2): 124–131.
doi: https://doi.org/10.1115/1.3264253
Elasto-Plastic Stress Analysis of the Standard Compact Specimen
J. Pressure Vessel Technol. May 1983, 105(2): 132–137.
doi: https://doi.org/10.1115/1.3264254
Crack Initiation Under Low-Cycle Multiaxial Fatigue in Type 316L Stainless Steel
J. Pressure Vessel Technol. May 1983, 105(2): 138–143.
doi: https://doi.org/10.1115/1.3264255
Topics:
Cycles
,
Fatigue
,
Fracture (Materials)
,
Stainless steel
,
Compression
,
Tension
,
Stress
,
Microcracks
,
Shear (Mechanics)
,
Fatigue life
Lifetime Analysis of Fusion Reactor First Wall Components
J. Pressure Vessel Technol. May 1983, 105(2): 144–152.
doi: https://doi.org/10.1115/1.3264256
On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept
J. Pressure Vessel Technol. May 1983, 105(2): 153–158.
doi: https://doi.org/10.1115/1.3264257
Topics:
Constitutive equations
,
Hardening
,
Kinematics
,
Stress
,
Tensors
,
Viscoplasticity
On the Plastic and Viscoplastic Constitutive Equations—Part II: Application of Internal Variable Concepts to the 316 Stainless Steel
J. Pressure Vessel Technol. May 1983, 105(2): 159–164.
doi: https://doi.org/10.1115/1.3264258
Topics:
Constitutive equations
,
Stainless steel
,
Hardening
,
Alloys
,
Creep
,
Kinematics
,
Metals
,
Plasticity
,
Viscoplasticity
Stress Redistribution During Annealing of a Multi-Pass Butt-Welded Pipe
J. Pressure Vessel Technol. May 1983, 105(2): 165–170.
doi: https://doi.org/10.1115/1.3264259
Topics:
Annealing
,
Pipes
,
Stress
,
Residual stresses
,
Temperature
,
Welding
,
Heat
,
Heating
,
Steel
,
Transients (Dynamics)
Seismic Analysis of Structures With Coulomb Friction
J. Pressure Vessel Technol. May 1983, 105(2): 171–178.
doi: https://doi.org/10.1115/1.3264260
Topics:
Coulombs
,
Friction
,
Seismic analysis
,
Earthquakes
,
Deformation
,
Degrees of freedom
,
Displacement
,
Dynamic analysis
,
Dynamic response
,
Equations of motion
Estimation of Creep Deformation in Components From Short-Term Proof Test Data
J. Pressure Vessel Technol. May 1983, 105(2): 179–184.
doi: https://doi.org/10.1115/1.3264261
Technical Briefs
Clamped Spherical Shell Subject to Partially Applied Hydrostatic Pressure
J. Pressure Vessel Technol. May 1983, 105(2): 185–187.
doi: https://doi.org/10.1115/1.3264262
Topics:
Hydrostatic pressure
,
Spherical shells
Email alerts
RSS Feeds
Surface Strain Measurement for Non-Intrusive Internal Pressure Evaluation of A Cannon
J. Pressure Vessel Technol
The Upper Bound of the Buckling Stress of Axially Compressed Carbon Steel Circular Cylindrical Shells
J. Pressure Vessel Technol (December 2024)
Crack Growth Prediction Based on Uncertain Parameters Using Ensemble Kalman Filter
J. Pressure Vessel Technol (December 2024)
Machine Learning Modelling for Predicting Tensile Strain Capacity of Pipelines and Identifying Key Factors
J. Pressure Vessel Technol
Defect Detection of Polyethylene Gas Pipeline Based on Convolutional Neural Networks and Image Processing
J. Pressure Vessel Technol