Validation of a computational weld mechanics (CWM) code for a particular welding application requires an estimate of the difference between experimentally measured parameters and parameters computed by a computational model. This requires estimates of the uncertainty in both the experimental data and the computational data and this requires careful design of both the experiment and the CWM model. The authors experience in performing validation tests for a CWM code is summarized. An example of a validation test for a welding application that compares measured and computed transient temperatures, displacements and strains is described in detail that demonstrates that model can accurately predict this data. Challenges on both the experimental side and computational side are discussed but the greatest challenge is the limited availability of experimental data that has a measure of uncertainty.

References

1.
Goldak
,
J. A.
,
Chakravarti
,
A.
, and
Bibby
,
M. J.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Trans. AIME.
,
15B
(
186
), pp.
299
305
.
2.
Goldak
,
J. A.
,
Patel
,
B.
,
Bibby
,
M. J.
, and
Moore
,
J. E.
,
1985
,
Computational Weld Mechanics, Invited Opening Paper for AGARD Workshop—Structures and Materials 61st Panel Meeting
,
Oberammergau, Germany
, Sept. 8–13, pp.
1-1
1-32
.
3.
Goldak
,
J.
,
Breiguine
, V
.
, and
Dai
,
N.
,
1995
, “
Computational Weld Mechanics: A Progress Report on Ten Grand Challenges
,”
4th International Conference on Trends in Welding Research
,
Gatlinburg, Tennessee
, June 5–8.
4.
Goldak
,
J.
,
2008
, “
Distortion and Residual Stress in Welded Structures; The Next Generation
,”
8th International Trends in Welding Research, Callaway Gardens Resort
,
Pine Mountain, Georgia
, June 2–5.
5.
Masubuchi
,
K.
,
1983
,
Analysis of Welded Structures, Section
,
Transient Thermal Stress
,
Pergamon Elmsford, NY
, pp.
172
187
.
7.
Simo
,
J. C.
,
1998
, “
Numerical Analysis of Classical Plasticity
,”
Handbook for Numerical Analysis
, Vol.
40
,
P. G.
Ciarlet
and
J. J.
Lions
, eds.,
Elsevier
,
Amsterdam
The Netherlands.
8.
Goldak
,
J.
, and
Akhlaghi
,
M.
,
2005
,
Computational Welding Mechanics
,
Springer
,
New York
.
9.
Gu
,
M.
, and
Goldak
,
J.
,
1994
, “
Steady State Formulation for Stress and Distortion of Welds
,”
ASME J. Eng. Ind.
,
116
, pp.
467
474
.10.1115/1.2902130
10.
American Society of Mechanical Engineers
,
2006
,
Guide for Verification and Validation in Computational Solid Mechanics
, VV 10-2006, New York. Available at: http://cstools.asme.org/csconnect/pdf/CommitteeFiles/24816.pdf
11.
Karniadakis
,
G. E.
, and
Glimm
,
J.
,
2006
, “
Uncertainty Quantification in Simulation Science
”,
J. Comp. Phys.
,
217
(1), pp.
1
4
.10.1016/j.jcp.2006.06.009
12.
William L.
OberKampf
and
Mathe F.
Barone
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comp. Phys.
,
217
, pp.
5
36
.10.1016/j.jcp.2006.03.037
13.
Radaj
,
D.
, and
Lindgren
,
L.-E.
,
2006
,
Verification and Validation in Computational Weld Mechanics, Mathematical Modeling of Weld Phenomena
, Vol.
8
,
H.
Cerjak
,
H. K. D. H.
Bhadeshia
, and
E.
Kozenchnik
, eds., Maney Publishing, UK., pp.
1039
1051
.
14.
Sudnik
,
W.
,
1997
,
Modelling of the MaG Process for Pre-Welding Planning, Mathematical Modeling of Weld Phenomena
, Vol.
3
,
H.
Cerjak
and
H. K. D. H.
Bhadeshia
, eds., Maney Publishing, UK., pp.
791
816
.
15.
Ashby
,
M. F.
, and
Easterling
,
K. E.
,
1982
, “
A First Report on Diagrams for Grain Growth in the Welds
,”
Acta Metall.
,
82
(
11
), pp.
1969
1978
.
16.
Ion
,
J. C.
,
Easterling
,
K. E.
, and
Ashby
,
M. F.
,
1984
, “
A Second Report on Diagrams of Microstructures and Hardness for Heat-Affected Zones in Welds
,”
Acta Metall.
,
32
(
11
), pp.
1949
1962
.10.1016/0001-6160(84)90176-7
17.
Smith
,
M. C.
, and
Smith
,
A. C.
,
2009
, “
NeT Bead-on-Plate Round Robin: Comparison of Transient Thermal Predictions and Measurements
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
96
109
.10.1016/j.ijpvp.2008.11.016
18.
Smith
,
M. C.
, and
Smith
,
A. C.
,
2009
, “
NeT Bead-on-Plate Round Robin: Comparison of Residual Stress Predictions and Measurements
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
79
95
.10.1016/j.ijpvp.2008.11.017
19.
Justin
D.
Francis
,
2002
, “
Welding Simulations of Aluminum Alloy Joints by Finite Element Analysis
,” M.Sc. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
20.
Truman
,
C. E.
,
2009
, “
The NeT Residual Stress Measurement and Modelling Round Robin on a Single Weld Bead-on-Plate Specimen
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
1
2
.10.1016/j.ijpvp.2008.11.018
21.
Pahkamaa
,
A.
, and
Pavasson
,
J.
,
2009
, “
A New Welding Modelling Approach in Simulation Driven Design
,” M.Sc. thesis, Lulea University of Technology, Sweden.
22.
Bayley
,
C.
, and
Goldak
,
J.
, 2012, “
Welding Induced Distortions and Strains of a Built-Up Panel, Experiment and Numerical Validation
,”
ASME J. Pressure Vessel Technol.
,
134
(2), p.
021212
.10.1115/1.4004620
23.
Goldak
,
J.
,
2008
, “
Thermo-Mechanical Modelling of Welding Induced Strains: Numerical Validation of the Weld Build-up Process
,” DRDC Atlantic CR 2008-283.
24.
Asadi
,
M.
,
Goldak
,
J.
,
Nielsen
,
J.
,
Tchernov
,
S.
,
Downey
,
D.
, and
Zhou
,
J.
,
2009
, “
Analysis of Predicted Residual Stress in a Weld and Comparison With Experimental Data Using Regression Model
,”
Int J. Mech. Mater. Des.
,
5
(4), pp 353–364.10.1007/s10999-009-9107-5
25.
Goldak
,
J.
,
Johnson
,
E.
,
El-Zein
,
M.
,
Zhou
,
J.
,
Tchernov
,
S.
,
Downey
,
D.
,
Wang
,
S.
, and
Coulombe
,
M.
,
2008
, “
The L2 Norm of the Deviation Between the Measured and Computed Transient Displacement Field in a Test Weld
,”
Int. J. Mater. Res.
,
99
, pp.
428
433
.10.3139/146.101657
You do not currently have access to this content.