Abstract

The failure accidents in girth weld of pipelines occur frequently due to the combination of internal defects and external loads. However, the research on the fracture behavior of girth weld defects is relatively poor at present. To solve this problem, the cracking behavior and strain evolution law of the inner wall defects of the pipe girth weld are studied in combination with full-scale tests (FST). The constitutive and Gurson-Tvergaard-Needleman damage parameters of the pipe base metal zone, weld zone and heat-affected zone (HAZ) are calibrated through the small punch test (SPT) and single edge notch bending (SENB) test. On this basis, the welded pipe model with inner wall defects is established, and a numerical simulation method for dynamic fracture behavior based on damage mechanics is formed. The numerical simulation method is verified by FST data and theoretical calculation. The results show that the numerical results are consistent with the FST and theoretical calculation in the elastic stage, plastic stage, and fracture stage, and the error is within 10%. The novel numerical simulation method is provided as a means for the fracture behavior research of pipeline girth weld.

References

1.
Wang
,
G.
,
Cheng
,
Q.
,
Zhao
,
W.
,
Liao
,
Q.
, and
Zhang
,
H.
,
2022
, “
Review on the Transport Capacity Management of Oil and Gas Pipeline Network: Challenges and Opportunities of Future Pipeline Transport
,”
Energy Strateg., Rev.
,
43
, p.
100933
.10.1016/j.esr.2022.100933
2.
Chen
,
C.
,
Sun
,
G.
,
Du
,
W.
,
Li
,
Y.
,
Fan
,
C.
, and
Zhang
,
H.
,
2022
, “
Influence of Heat Input on the Appearance, Microstructure and Microhardness of Pulsed Gas Metal Arc Welded Al Alloy Weldment
,”
J. Mater. Res. Technol.
,
21
, pp.
121
130
.10.1016/j.jmrt.2022.09.028
3.
Chen
,
G.
,
Luo
,
H.
,
Yang
,
H.
,
Han
,
Z.
,
Lin
,
Z.
,
Zhang
,
Z.
, and
Su
,
Y.
,
2019
, “
Effects of the Welding Inclusion and Notch on the Fracture Behaviors of Low-Alloy Steel
,”
J. Mater. Res. Technol.
,
8
(
1
), pp.
447
456
.10.1016/j.jmrt.2018.04.005
4.
Norris
,
J. T.
,
Perricone
,
M. J.
,
Roach
,
R. A.
,
Faraone
,
K.
, and
Ellison
,
C.
,
2007
, “
Evaluation of Weld Porosity in Laser Beam Seam Welds: Optimizing Continuous Wave and Square Wave Modulated Processes
,”
International Congress on Applications of Lasers & Electro-Optics
,
Laser Institute of America, Orlando, FL
.https://www.osti.gov/servlets/purl/902878
5.
Kasahara
,
M.
,
Kagami
,
Y.
,
Hiroshige
,
T.
,
Shima
,
T.
,
Shimokawa
,
H.
, and
Nakagomi
,
T.
,
2011
, “
Study of Ultrasonic Angle Beam Testing Considering the Weld Defects Cause and the Soundness in Weld Joints
,”
J. Struct. Cons. Eng
,.,
76
(
669
), pp.
1897
1904
.10.3130/aijs.76.1897
6.
National Transportation
Safety
Board
,
2015
, “
Natural Gas-Fueled Building Explosion and Resulting Fire
,”
National Transportation Safety Board
,
Washington, DC
.
7.
Vetter
,
C. P.
,
Kuebel
,
L. A.
,
Natarajan
,
D.
, and
Mentzer
,
R. A.
,
2019
, “
Review of Failure Trends in the U.S. Natural Gas Pipeline Industry: An in-Depth Analysis of Transmission and Distribution System Incidents
,”
J. Loss Prev. Process
Ind.,
60
, pp.
317
333
.10.1016/j.jlp.2019.04.014
8.
Jiang
,
J.
,
Zhang
,
H.
,
Zhang
,
D.
,
Ji
,
B.
,
Wu
,
K.
,
Chen
,
P.
,
Sha
,
S.
, and
Liu
,
X.
,
2022
, “
Fracture Response of Mitered X70 Pipeline With Crack Defect in Butt Weld: Experimental and Numerical Investigation
,”
Thin Wall. Struct.
,
177
, p.
109420
.10.1016/j.tws.2022.109420
9.
Agbo
,
S.
,
Imanpour
,
A.
,
Li
,
Y.
,
Yoosef
,
N.
,
Cheng
,
J.
, and
Adeeb
,
S.
,
2020
, “
Development of a Tensile Strain Capacity Predictive Model for American Petroleum Institute 5 L X42 Welded Vintage Pipelines
,”
ASME J. Pressure Vessel Technol.
,
142
, p.
061506
.10.1115/1.4047561
10.
Nicak
,
T.
,
Schendzielorz
,
H.
,
Keim
,
E.
, and
Meier
,
G.
,
2011
, “
STYLE: Study on Transferability of Fracture Material Properties From Small Scale Specimens to a Real Component
,”
ASME
Paper No. PVP2011-57613. 10.1115/PVP2011-57613
11.
Jay
,
A.
,
Myers
,
A. T.
,
Mirzaie
,
F.
,
Mahmoud
,
A.
,
Torabian
,
S.
,
Smith
,
E.
, and
Schafer
,
B. W.
,
2016
, “
Large-Scale Bending Tests of Slender Tapered Spirally Welded Steel Tubes
,”
J. Struct. Eng.
,
142
(
12
), p.
04016136
.10.1061/(ASCE)ST.1943-541X.0001605
12.
Cao
,
Y.
,
Zu
,
Y.
,
Zhen
,
Y.
,
Li
,
F.
, and
Wu
,
G.
,
2022
, “
Determination of the True Stress-Strain Relations of High-Grade Pipeline Steels Based on Small Punch Test Correlation Method
,”
Int. J. Pressure Vessels Piping
,
199
, p.
104739
.10.1016/j.ijpvp.2022.104739
13.
Gurson
,
A.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1 - Yield Criteria and Flow Rules for Porous Ductile
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
14.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup - Cone Fracture in a Round Tensile Bar
,”
Acta. Metall.
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
15.
Qiang
,
B.
, and
Wang
,
X.
,
2019
, “
Ductile Crack Growth Behaviors at Different Locations of a Weld Joint for an X80 Pipeline Steel: A Numerical Investigation Using GTN Models
,”
Eng. Fract. Mech.
,
213
, pp.
264
279
.10.1016/j.engfracmech.2019.04.009
16.
Cao
,
Y.
,
Chang
,
Q.
, and
Zhen
,
Y.
,
2022
, “
Numerical Simulation of Fracture Behavior for the Pipeline With Girth Weld Under Axial Load
,”
Eng. Failure Anal.
,
136
, p.
106221
.10.1016/j.engfailanal.2022.106221
You do not currently have access to this content.