Abstract

Traditional unidirectional cold expansion technology usually generates non-uniform distribution of residual stress in the thickness direction of holes, which is harmful to the improvement of fatigue life of holes. The present work proposed a bi-directional cold expansion procedure to realize the homogenization of residual stress in the thickness direction of the cold expanded hole, thereby further improved antifatigue performance of cold expanded hole. For this aim, a series of finite element (FE) simulations were carried out to investigate the effectiveness of the bi-directional cold expansion procedure and optimize the process parameters. The results showed that the optimized bi-directional cold expansion process generated a more uniform distribution of residual circumferential compressive stress in the thickness direction comparing to the simplified bidirectional cold expansion process using a single mandrel. For the Aluminum alloy 7050-T7451, when the first interference level I1 = 1.8%, the largest and the most uniform residual circumferential compressive stress was achieved, which suggested the best anti-fatigue performance.

References

1.
Wang, C. Y., Li, X. F., Zuo, D. W., Chen, G. Y., Li, J., Li, M., and Zhu, C. F., 2016, “Establishment and Verification of Fatigue Life Simulation Model for 1 Cold-Expansion Hole With Split Sleeve,”
Ordnance Mater. Sci. Eng.
, 39(3), pp. 43–47.10.14024/j.cnki.1004-244x.20160421.001
2.
Liu
,
H.
,
Hu
,
D. Y.
,
Wang
,
R. Q.
,
Wang
,
X.
,
Jin
,
S. Z.
, and
Gu
,
Y. X.
,
2020
, “
Experimental and Numerical Investigations on the Influence of Cold Expansion on Low Cycle Fatigue Life of Bolt Holes in Aeroengine Superalloy Disk at Elevated Temperature
,”
Int. J. Fatigue
,
132
, p.
105390
.10.1016/j.ijfatigue.2019.105390
3.
Wang
,
Y. L.
,
Zhu
,
Y. L.
,
Hou
,
S.
,
Sun
,
H. X.
, and
Zhou
,
Y.
,
2017
, “
Investigation on Fatigue Performance of Cold Expansion Holes of 6061-T6 Aluminum Alloy
,”
Int. J. Fatigue
,
95
, pp.
216
228
.10.1016/j.ijfatigue.2016.10.030
4.
Chaudhari
,
A. Y.
, and
Patil
,
R. D.
,
2014
, “
Analysis and Experimental Investigation of Rail Joint to Improve Fatigue Life Using Cold Expansion Process
,”
IOSR J. Mech. Civ. Eng.
, 2(
2320-334
), pp.
81
84
.https://www.iosrjournals.org/iosr-jmce/papers/ICAET-2014/me/volume-2/19.pdf
5.
Yuan
,
X.
,
Yue
,
Z. F.
,
Wen
,
S. F.
,
Li
,
L.
, and
Feng
,
T.
,
2015
, “
Numerical and Experimental Investigation of the Cold Expansion Process With Split Sleeve in Titanium Alloy TC4
,”
Int. J. Fatigue
,
77
, pp.
78
85
.10.1016/j.ijfatigue.2015.03.014
6.
Zhang, X. H., Xu, G. Q., Nie, L., He, W., Yang, J. Q., Zheng, Q. C. S. M., and Wang, Y. L., 2019, “Numerical Study on the Residual Stress Field Produced by Split Sleeve Hole Cold Expansion,”
Mater. Sci. Technol.
, 27(4), pp. 64–70.10.11951/j.issn.1005-0299.20180109
7.
Chakherlou
,
T. N.
,
Shakouri
,
M.
,
Akbari
,
A.
, and
Aghdam
,
A. B.
,
2012
, “
Effect of Cold Expansion and Bolt Clamping on Fretting Fatigue Behavior of Al 2024-T3 in Double Shear Lap Joints
,”
Eng. Failure Anal.
,
25
, pp.
29
41
.10.1016/j.engfailanal.2012.04.008
8.
Emami Geiglou
,
Z.
, and
Chakherlou
,
T. N.
,
2019
, “
Numerical and Experimental Investigation of the Effect of the Cold Expansion Process on the Fatigue Behavior of Hybrid (Bonded-Bolted) Double Shear Lap Aluminum Joints
,”
Int. J. Fatigue
,
126
, pp.
30
43
.10.1016/j.ijfatigue.2019.04.021
9.
Emami Geiglou
,
Z.
, and
Chakherlou
,
T. N.
,
2019
, “
Investigating the Effect of Cold Expansion Process on the Fatigue Behavior of Aluminum Alloy 7075-T6 in Double-Lap Shear Joints
,”
Proc. Inst. Mech. Eng., Part L
,
233
(
8
), pp.
1645
1660
.10.1177/1464420718781167
10.
Faghih
,
S.
,
Shaha
,
S. K.
,
Behravesh
,
S. B.
, and
Jahed
,
H.
,
2020
, “
Split Sleeve Cold Expansion of AZ31B Sheet: Microstructure, Texture and Residual Stress
,”
Mater. Des.
,
186
, p.
108213
.10.1016/j.matdes.2019.108213
11.
Cao
,
X.
,
Zhang
,
P.
,
Liu
,
S.
,
Lei
,
X. L.
,
Wang
,
R. Z.
,
Zhang
,
X. C.
, and
Tu
,
S. T.
,
2020
, “
A Novel Hole Cold-Expansion Method and Its Effect on Surface Integrity of Nickel-Based Superalloy
,”
J. Mater. Sci. Technol.
,
59
, pp.
129
137
.10.1016/j.jmst.2020.05.022
12.
Shahriary
,
P.
, and
Chakherlou
,
T. N.
,
2018
, “
Investigating the Effect of Cold Expansion on Frictional Force Evolution During Fretting Fatigue Tests of AL2024-T3 Plates
,”
Int. J. Mech. Sci.
,
135
, pp.
146
157
.10.1016/j.ijmecsci.2017.11.004
13.
Marco
,
G.
,
Lodi
,
M.
, and
Giudici
,
L.
,
2013
, “
Effects of the Interference Level on the Residual Stresses in a Cold-Working Expansion Method
,”
Key Eng. Mater.
,
577–578
, pp.
329
332
.10.4028/www.scientific.net/KEM.577-578.329
14.
Giglio
,
M.
, and
Lodi
,
M.
,
2007
, “
Residual Stress Analysis in Cold-Worked Holes With Interference Bushing[J]
,”
Int. J. Mater. Prod. Technol.
,
30
(
1/2/3
), p.
67
.10.1504/IJMPT.2007.013109
15.
Jiang
,
J. L.
, and
Zhao
,
M. P.
,
1991
, “
Analysis of Residual Stress Field at Cold-Worked Fastener Hole
,”
Acta Aeronaut. Astronaut. Sin.
,
10
, pp.
511
513
.
16.
Lianggui
,
P. U.
, and
Minggang
,
J. I.
,
2006
,
Design of Machinery
,
High Education Press
,
Beijing
, China, pp.
46
58
.
17.
Wang
,
Q.
,
Zhao
,
Y.
, and
Ni
,
M. L.
,
2020
, “
Fatigue Properties of Aluminum Alloy Hole Structure Strengthened by High Interference Fit Bushing Technique
,”
Mater. Mech. Eng.
,
44
(
7
), pp.
46
50
.
18.
Ayatollahi
,
M. R.
, and
Arian Nik
,
M.
,
2009
, “
Edge Distance Effects on Residual Stress Distribution Around a Cold Expanded Hole in Al 2024 Alloy
,”
Comput. Mater. Sci.
,
45
(
4
), pp.
1134
1141
.10.1016/j.commatsci.2009.01.018
You do not currently have access to this content.