Abstract

Guided wave is a key nondestructive technique for structural health monitoring due to its high sensitivity to structural changes and long propagation distance. However, to achieve high accuracy for damage location, large quantities of samples and thousands of iterations are typically needed for detection algorithms. To address this, in this paper, an eXplainable Convolutional neural network for Multivariate time series classification (XCM) is adopted, which is composed of one-dimensional (1D) and two-dimensional (2D) convolution layers to achieve high accuracy damage location on pressure vessels with limited training sets. By further optimizing the network parameters and network structure, the training time is greatly reduced and the accuracy is further improved. The optimized XCM improves the damage location precision from 95.5% to 98% with small samples (training set/validation set/testing set = 23/2/25) and low training epochs (under 100 epochs), suggesting that the XCM has great advantages in pressure vessel's damage location classification its potential for guided wave-based damage detection techniques in structural health monitoring.

References

1.
Perl
,
M.
,
Steiner
,
M.
, and
Perry
,
J.
,
2014
, “
3-D Stress Intensity Factors Due to Autofrettage for an Inner Radial Lunular or Crescentic Crack in a Spherical Pressure Vessel
,”
Eng. Fract. Mech.
,
131
, pp.
282
295
.10.1016/j.engfracmech.2014.08.003
2.
Seifert
,
H. P.
, and
Ritter
,
S.
,
2008
, “
Stress Corrosion Cracking of Low-Alloy Reactor Pressure Vessel Steels Under Boiling Water Reactor Conditions
,”
J. Nucl. Mater.
,
372
(
1
), pp.
114
131
.10.1016/j.jnucmat.2007.03.048
3.
Gou
,
R. B.
,
Zhang
,
Y. L.
,
Xu
,
X. D.
,
Sun
,
L.
, and
Yang
,
Y.
,
2011
, “
Residual Stress Measurement of New and in-Service X70 Pipelines by X-Ray Diffraction Method
,”
NDT & E Int.
,
44
(
5
), pp.
387
393
.10.1016/j.ndteint.2011.03.003
4.
Kralovec
,
C.
, and
Schagerl
,
M.
,
2020
, “
Review of Structural Health Monitoring Methods Regarding a Multi-Sensor Approach for Damage Assessment of Metal and Composite Structures
,”
Sensors
,
20
(
3
), p.
826
.10.3390/s20030826
5.
Horace
,
L.
,
1917
, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. A
,
93
(
648
), pp.
114
128
.10.1098/rspa.1917.0008
6.
Worlton
,
D. C.
,
1961
, “
Experimental Confirmation of Lamb Waves at Mega-Cycle Frequencies
,”
J. Appl. Phys.
,
32
(
6
), pp.
967
971
.10.1063/1.1736196
7.
Hu
,
G.
,
Chen
,
C.
,
Zhou
,
S.
, and
Zhai
,
S.
,
2020
, “
A Study on Defect Tomographic Imaging in Pressure Vessel With Liquid Medium
,”
ASME J. Pressure Vessel Technol.
,
142
(
4
), p.
041601
.10.1115/1.4046514
8.
Yang
,
B.
,
Xiang
,
Y. X.
,
Xuan
,
F. Z.
,
Hu
,
C. J.
,
Xiao
,
B.
,
Zhou
,
S. P.
, and
Luo
,
C. Q.
,
2019
, “
Damage Localization in Hydrogen Storage Vessel by Guided Waves Based on a Real-Time Monitoring System
,”
Int. J. Hydrogen Energy
,
44
(
40
), pp.
22740
22751
.10.1016/j.ijhydene.2019.01.009
9.
Hall
,
J. S.
, and
Michaels
,
J. E.
,
2010
, “
Minimum Variance Ultrasonic Imaging Applied to an In Situ Sparse Guided Wave Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
10
), pp.
2311
2323
.10.1109/TUFFC.2010.1692
10.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.10.1126/science.1127647
11.
Chen
,
H.
,
Hu
,
N.
,
Cheng
,
Z.
,
Zhang
,
L.
, and
Zhang
,
Y.
,
2019
, “
A Deep Convolutional Neural Network Based Fusion Method of Two-Direction Vibration Signal Data for Health State Identification of Planetary Gearboxes
,”
Measurement
,
146
, pp.
268
278
.10.1016/j.measurement.2019.04.093
12.
Peng
,
S. L.
,
Jiang
,
H. Y.
,
Wang
,
H. X.
,
Alwageed
,
H.
,
Zhou
,
Y.
,
Sebdani
,
M. M.
, and
Yao
,
Y. D.
,
2019
, “
Modulation Classification Based on Signal Constellation Diagrams and Deep Learning
,”
IEEE Trans. Neural Networks Learn. Syst.
,
30
(
3
), pp.
718
727
.10.1109/TNNLS.2018.2850703
13.
Zhang
,
B.
,
Hong
,
X. B.
, and
Liu
,
Y.
,
2021
, “
Deep Convolutional Neural Network Probability Imaging for Plate Structural Health Monitoring Using Guided Waves
,”
IEEE Trans. Instrumentation Meas.
,
70
, p.
2510610
.10.1109/TIM.2021.3091204
14.
Melville
,
J.
,
Alguri
,
K. S.
,
Deemer
,
C.
, and
Harley
,
J. B.
,
2017
, “
Structural Damage Detection Using Deep Learning of Ultrasonic Guided Waves
,” Paper Presented at the 44th Annual Conference on Review of Progress in Quantitative Nondestructive Evaluation (
QNDE
), Provo, UT, July 16–21, p.
015032
.10.1063/1.5031651
15.
Liu
,
H.
, and
Zhang
,
Y.
,
2020
, “
Deep Learning Based Crack Damage Detection Technique for Thin Plate Structures Using Guided Lamb Wave Signals
,”
Smart Mater. Struct.
,
29
(
1
), p.
015032
.10.1088/1361-665X/ab58d6
16.
Fauvel
,
K.
,
Lin
,
T.
,
Masson
,
V.
,
Fromont
,
E.
, and
Termier
,
A.
,
2021
, “
Xcm: An Explainable Convolutional Neural Network for Multivariate Time Series Classification
,”
Mathematics
,
9
(
23
), p.
3137
.10.3390/math9233137
17.
Hu
,
C.
,
Yang
,
B.
,
Yan
,
J.
,
Xiang
,
Y.
,
Zhou
,
S.
, and
Xuan
,
F.-Z.
,
2020
, “
Damage Localization in Pressure Vessel by Guided Waves Based on Convolution Neural Network Approach
,”
ASME J. Pressure Vessel Technol.
,
142
(
6
), p.
061601
.10.1115/1.4047213
18.
Sanchez-Giraldo
,
L. G.
,
Laskar
,
M. N. U.
, and
Schwartz
,
O.
,
2019
, “
Normalization and Pooling in Hierarchical Models of Natural Images
,”
Curr. Opin. Neurobio.
,
55
, pp.
65
72
.10.1016/j.conb.2019.01.008
19.
Simonyan
,
K.
, and
Andrew
,
Z.
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” Computer Vision and Pattern Recognition (
ICLR
).10.48550/arXiv.1409.1556
20.
Sandler
,
M.
,
Howard
,
A.
,
Zhu
,
M. L.
,
Zhmoginov
,
A.
, and
Chen
,
L. C.
,
2018
, “
MobileNetv2: Inverted Residuals and Linear Bottlenecks
,” Paper Presented at the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR
), Salt Lake City, UT, June 18–23, pp.
4510
4520
.10.1109/CVPR.2018.00474
21.
Chollet
,
F.
,
2017
, “
Xception: Deep Learning With Depthwise Separable Convolutions
,” Paper Presented at the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR
), Honolulu, HI, July 21–26, pp. 1800–1807.10.1109/CVPR.2017.195
22.
Huang
,
G.
,
Liu
,
Z.
,
van der Maaten
,
L.
, and
Weinberger
,
K. Q.
,
2017
,
Densely Connected Convolutional Networks
,” Paper presented at the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (
CVPR
), Honolulu, HI, July 21–26, pp.
2261
2269
.10.1109/CVPR.2017.243
23.
He
,
K. M.
,
Zhang
,
X. Y.
,
Ren
,
S. Q.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,” Paper Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Seattle, WA, June 27–30, pp. 770–77810.1109/CVPR.2016.90.
You do not currently have access to this content.