Abstract

The present article examines the nonlinear static/dynamic behavior of the functionally graded porous shell panel with variable geometrical shapes exposed to thermomechanical load. The higher-order shear deformation theory (HSDT) is employed to develop a finite element (FE)-based mathematical model. The geometric nonlinearity is incorporated using Green–Lagrange nonlinear strains (GLNS). Voigt's micromechanical model, in association with power-law (GT-I), sigmoid (GT-II) and exponential (GT-III) kinds of material grading patterns, is adopted to calculate the graded panel's effective properties. Also, even (PRT-I) and uneven (PRT-II) distributions of porosity are considered in the present work. The temperature-dependent (TD) properties are adopted in association with variable temperature fields, i.e., uniform (TD-I), linear (TD-II), and nonlinear (TD-III) for the computation of flexural responses. To compute the desired nonlinear responses, the direct iterative technique is utilized. Convergence is used to validate the established model's stability and correctness is further verified by comparing the current numerical data to published and experimental results. The experiment was carried out by fabricating a few natural fiber-reinforced linearly varying layerwise panels for the test run. The study is further extended to investigate the influence of design parameters on nonlinear static and transient data (flexural/stress) of the functionally graded curved/flat panel considering thermal environmental conditions.

References

1.
Reddy
,
J. N.
, and
Chin
,
C. D.
,
1998
, “
Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
,
21
(
6
), pp.
593
626
.10.1080/01495739808956165
2.
Yang
,
J.
, and
Shen
,
H.-S.
,
2003
, “
Nonlinear Bending Analysis of Shear Deformable Functionally Graded Plates Subjected to Thermo-Mechanical Loads Under Various Boundary Conditions
,”
Composites Part B
,
34
(
2
), pp.
103
115
.10.1016/S1359-8368(02)00083-5
3.
Tung
,
H. V.
, and
Duc
,
N. D.
,
2014
, “
Nonlinear Response of Shear Deformable FGM Curved Panels Resting on Elastic Foundations and Subjected to Mechanical and Thermal Loading Conditions
,”
Appl. Math. Model.
,
38
, pp.
2848
2866
.10.1016/j.apm.2013.11.015
4.
Woo
,
J.
, and
Meguid
,
S. A.
,
2001
, “
Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,”
Int. J. Solids Struct.
,
38
, pp.
7409
7421
.10.1016/S0020-7683(01)00048-8
5.
Na
,
K.-S.
, and
Kim
,
J.-H.
,
2006
, “
Nonlinear Bending Response of Functionally Graded Plates Under Thermal Loads
,”
J. Therm. Stresses
,
29
(
3
), pp.
245
261
.10.1080/01495730500360427
6.
Zenkour
,
A. M.
,
2010
, “
Hygro-Thermo-Mechanical Effects on FGM Plates Resting on Elastic Foundations
,”
Compos. Struct.
,
93
(
1
), pp.
234
238
.10.1016/j.compstruct.2010.04.017
7.
Oktem
,
A. S.
,
Mantari
,
J. L.
, and
Soares
,
C. G.
,
2012
, “
Static Response of Functionally Graded Plates and Doubly-Curved Shells Based on a Higher Order Shear Deformation Theory
,”
Eur. J. Mech. - A/Solids
,
36
, pp.
163
172
.10.1016/j.euromechsol.2012.03.002
8.
Taj
,
M. N. A. G.
,
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
,
2013
, “
Analysis of Functionally Graded Plates Using Higher Order Shear Deformation Theory
,”
Appl. Math. Model.
,
37
(
18–19
), pp.
8484
8494
.10.1016/j.apm.2013.03.058
9.
Zhao
,
X.
, and
Liew
,
K. M.
,
2009
, “
Geometrically Nonlinear Analysis of Functionally Graded Shells
,”
Int. J. Mech. Sci.
,
51
(
2
), pp.
131
144
.10.1016/j.ijmecsci.2008.12.004
10.
Zhu
,
P.
,
Zhang
,
L. W.
, and
Liew
,
K. M.
,
2014
, “
Geometrically Nonlinear Thermomechanical Analysis of Moderately Thick Functionally Graded Plates Using a Local Petrov–Galerkin Approach With Moving Kriging Interpolation
,”
Compos. Struct.
,
107
(
1
), pp.
298
314
.10.1016/j.compstruct.2013.08.001
11.
Yoosefian
,
A. R.
,
Golmakani
,
M. E.
, and
Sadeghian
,
M.
,
2020
, “
Nonlinear Bending of Functionally Graded Sandwich Plates Under Mechanical and Thermal Load
,”
Commun. Nonlinear Sci. Numer. Simul.
,
84
, p.
105161
.10.1016/j.cnsns.2019.105161
12.
Shen
,
H.-S.
, and
Wang
,
H.
,
2015
, “
Nonlinear Bending and Postbuckling of FGM Cylindrical Panels Subjected to Combined Loadings and Resting on Elastic Foundations in Thermal Environments
,”
Composites, Part B
,
78
, pp.
202
213
.10.1016/j.compositesb.2015.03.078
13.
Jari
,
H.
,
Atri
,
H. R.
, and
Shojaee
,
S.
,
2015
, “
Nonlinear Thermal Analysis of Functionally Graded Material Plates Using a NURBS Based Isogeometric Approach
,”
Composite Struct.
,
119
, pp.
333
345
.10.1016/j.compstruct.2014.09.006
14.
Dong
,
Y. H.
, and
Li
,
Y. H.
,
2017
, “
A Unified Nonlinear Analytical Solution of Bending, Buckling and Vibration for the Temperature-Dependent FG Rectangular Plates Subjected to Thermal Load
,”
Compos. Struct.
,
159
, pp.
689
701
.10.1016/j.compstruct.2016.10.001
15.
Sator
,
L.
,
Sladek
,
V.
, and
Sladek
,
J.
,
2018
, “
Bending of FGM Plates Under Thermal Load: Classical Thermoelasticity Analysis by a Meshless Method
,”
Compos. Part B
,
146
, pp.
176
188
.10.1016/j.compositesb.2018.04.004
16.
Moita
,
J. S.
,
Franco Correia
,
V.
,
Mota Soares
,
C. M.
, and
Herskovits
,
J.
,
2019
, “
Higher-Order Finite Element Models for the Static Linear and Nonlinear Behaviour of Functionally Graded Material Plate-Shell Structures
,”
Compos. Struct.
,
212
, pp.
465
475
.10.1016/j.compstruct.2019.01.046
17.
Moita
,
J. S.
,
Araújo
,
A. L.
,
Correia
,
V. F.
,
Mota Soares
,
C. M.
, and
Herskovits
,
J.
,
2018
, “
Buckling and Nonlinear Response of Functionally Graded Plates Under Thermo-Mechanical Loading
,”
Compos. Struct.
,
202
, pp.
719
730
.10.1016/j.compstruct.2018.03.082
18.
Dastjerdi
,
S.
,
Malikan
,
M.
,
Dimitri
,
R.
, and
Tornabene
,
F.
,
2021
, “
Nonlocal Elasticity Analysis of Moderately Thick Porous Functionally Graded Plates in a Hygro-Thermal Environment
,”
Compos. Struct.
,
255
, p.
112925
.10.1016/j.compstruct.2020.112925
19.
Yang
,
J.
, and
Shen
,
H. S.
,
2002
, “
Vibration Characteristics and Transient Response of Shear-Deformable Functionally Graded Plates in Thermal Environments
,”
J. Sound Vib.
,
255
(
3
), pp.
579
602
.10.1006/jsvi.2001.4161
20.
Dai
,
K. Y.
,
Liu
,
G. R.
,
Han
,
X.
, and
Lim
,
K. M.
,
2005
, “
Thermomechanical Analysis of Functionally Graded Material (FGM) Plates Using Element-Free Galerkin Method
,”
Comput. Struct.
,
83
, pp.
1487
1502
.10.1016/j.compstruc.2004.09.020
21.
Malekzadeh
,
P.
, and
Monajjemzadeh
,
S. M.
,
2013
, “
Dynamic Response of Functionally Graded Plates in Thermal Environment Under Moving Load
,”
Compos. Part B
,
45
(
1
), pp.
1521
1533
.10.1016/j.compositesb.2012.09.022
22.
Hao
,
Y. X.
,
Zhang
,
W.
,
Yang
,
J.
, and
Li
,
S. Y.
,
2011
, “
Nonlinear Dynamic Response of a Simply Supported Rectangular Functionally Graded Material Plate Under the Time-Dependent Thermalmechanical Loads
,”
J. Mech. Sci. Technol.
,
25
(
7
), pp.
1637
1646
.10.1007/s12206-011-0501-1
23.
Phung-Van
,
P.
,
Thai
,
C. H.
,
Ferreira
,
A. J. M.
, and
Rabczuk
,
T.
,
2020
, “
Isogeometric Nonlinear Transient Analysis of Porous FGM Plates Subjected to Hygro-Thermo-Mechanical Loads
,”
Thin-Walled Struct.
,
148
, p.
106497
.10.1016/j.tws.2019.106497
24.
Duc
,
N. D.
, and
Quan
,
T. Q.
,
2014
, “
Transient Responses of Functionally Graded Double Curved Shallow Shells With Temperature-Dependent MaterialProperties in Thermal Environment
,”
Eur. J. Mech. - A/Solids
,
47
, pp.
101
123
.10.1016/j.euromechsol.2014.03.002
25.
Fu
,
Y.
,
Hu
,
S.
, and
Mao
,
Y.
,
2014
, “
Nonlinear Transient Response of Functionally Graded Shallow Spherical Shells Subjected to Mechanical Load and Unsteady Temperature Field
,”
Acta Mech. Solida Sin.
,
27
(
5
), pp.
496
508
.10.1016/S0894-9166(14)60058-6
26.
Zhang
,
J.-H.
,
Li
,
G.-Z.
, and
Li
,
S.-R.
,
2015
, “
Analysis of Transient Displacements for a Ceramic–Metal Functionally Graded Cylindrical Shell Under Dynamic Thermal Loading
,”
Ceram. Int.
,
41
(
9
), pp.
12378
12385
.10.1016/j.ceramint.2015.06.070
27.
Duc
,
N. D.
,
Tuan
,
N. D.
,
Tran
,
P.
,
Dao
,
N. T.
, and
Dat
,
N. T.
,
2015
, “
Nonlinear Dynamic Analysis of Sigmoid Functionally Graded Circular Cylindrical Shells on Elastic Foundations Using the Third Order Shear Deformation Theory in Thermal Environments
,”
Int. J. Mech. Sci.
,
101–102
, pp.
338
348
.10.1016/j.ijmecsci.2015.08.018
28.
Wang
,
Y. Q.
, and
Zu
,
J. W.
,
2017
, “
Nonlinear Dynamic Thermoelastic Response of Rectangular FGM Plates With Longitudinal Velocity
,”
Compos. Part B
,
117
, pp.
74
88
.10.1016/j.compositesb.2017.02.037
29.
Zhang
,
S.-Q.
,
Huang
,
Z.-T.
,
Zhao
,
Y.-F.
,
Ying
,
S.-S.
, and
Ma
,
S.-Y.
,
2021
, “
Static and Dynamic Analyses of FGPM Cylindrical Shells With Quadratic Thermal Gradient Distribution
,”
Compos. Struct.
,
277
, p.
114658
.10.1016/j.compstruct.2021.114658
30.
Dastjerdi
,
S.
, and
Akgöz
,
B.
,
2018
, “
New Static and Dynamic Analyses of Macro and Nano FGM Plates Using Exact Three-Dimensional Elasticity in Thermal Environment
,”
Compos. Struct.
,
192
, pp.
626
641
.10.1016/j.compstruct.2018.03.058
31.
Mojiri
,
H. R.
, and
Salami
,
S. J.
,
2022
, “
Free Vibration and Dynamic Transient Response of Functionally Graded Composite Beams Reinforced With Graphene Nanoplatelets (GPLs) Resting on Elastic Foundation in Thermal Environment
,”
Mech. Based Des. Struct. Mach.
,
50
(
6
), pp.
1872
1892
.10.1080/15397734.2020.1766492
32.
Shen
,
H. S.
,
2016
,
Functionally Graded Materials: Nonlinear Analysis of Plates and Shells
, CRC Press, Boca Raton, FL.
33.
Reddy
,
J. N.
,
2000
, “
Analysis of Functionally Graded Plates
,”
Int. J. Numer. Methods Eng.
,
47
, pp.
663
684
.10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
34.
Lei
,
J.
,
He
,
Y.
,
Li
,
Z.
,
Guo
,
S.
, and
Liu
,
D.
,
2019
, “
Postbuckling Analysis of Bi-Directional Functionally Graded Imperfect Beams Based on a Novel Third-Order Shear Deformation Theory
,”
Compos. Struct.
,
209
, pp.
811
829
.10.1016/j.compstruct.2018.10.106
35.
Ramteke
,
P. M.
,
Panda
,
S. K.
, and
Patel
,
B.
,
2022
, “
Nonlinear Eigenfrequency Characteristics of Multi-Directional Functionally Graded Porous Panels
,”
Compos. Struct.
,
279
, p.
114707
.10.1016/j.compstruct.2021.114707
36.
Dergachova
,
N.
,
Zou
,
G.
, and
Chang
,
Z.
,
2020
, “
Static Analysis of Functionally Graded Plates With a Porous Middle Layer Based on Higher Order Shear Deformation Theory With Linear/Quadratic Transverse Displacement
,”
Proc. Inst. Mech. Eng. Part C
,
234
(
24
), pp.
4917
4931
.10.1177/0954406220928369
37.
Chi
,
S.-H.
, and
Chung
,
Y.-L.
,
2006
, “
Mechanical Behavior of Functionally Graded Material Plates Under Transverse Load—Part I: Analysis
,”
Int. J. Solids Struct.
,
43
(
13
), pp.
3657
3674
.10.1016/j.ijsolstr.2005.04.011
38.
Ramteke
,
P. M.
,
Panda
,
S. K.
, and
Sharma
,
N.
,
2022
, “
Nonlinear Vibration Analysis of Multidirectional Porous Functionally Graded Panel Under Thermal Environment
,”
AIAA J.
, 60(8), pp.
4923
4933
.10.2514/1.J061635
39.
Pandya
,
B. N.
, and
Kant
,
T.
,
1988
, “
Finite Element Analysis of Laminated Composite Plates Using a Higher-Order Displacement Model
,”
Compos. Sci. Technol.
,
32
(
2
), pp.
137
155
.10.1016/0266-3538(88)90003-6
40.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells:Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
41.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2016
, “
Nonlinear Free Vibration of Functionally Graded Doubly Curved Shear Deformable Panels Using Finite Element Method
,”
J. Vib. Control
,
22
(
7
), pp.
1935
1949
.10.1177/1077546314545102
42.
Amir
,
M.
, and
Talha
,
M.
,
2018
, “
Thermoelastic Vibration of Shear Deformable Functionally Graded Curved Beams With Microstructural Defects
,”
Int. J. Struct. Stab. Dyn.
,
18
(
11
), p.
1850135
.10.1142/S0219455418501353
43.
Fazzolari
,
F. A.
, and
Carrera
,
E.
,
2014
, “
Thermal Stability of FGM Sandwich Plates Under Various Through-the-Thickness Temperature Distributions
,”
J. Therm. Stress.
,
37
(
12
), pp.
1449
1481
.10.1080/01495739.2014.937251
44.
Javaheri
,
R.
, and
Eslami
,
M. R.
,
2002
, “
Thermal Buckling of Functionally Graded Plates
,”
AIAA J.
,
40
(
1
), pp.
162
169
.10.2514/2.1626
45.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
1999
,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer Academic
, Dordrecht, The Netherlands.
46.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2009
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
Singapore
.
47.
Mehar
,
K.
,
Panda
,
S. K.
,
Bui
,
T. Q.
, and
Mahapatra
,
T. R.
,
2017
, “
Nonlinear Thermoelastic Frequency Analysis of Functionally Graded CNT-Reinforced Single/Doubly Curved Shallow Shell Panels by FEM
,”
J. Therm. Stress.
,
40
(
7
), pp.
899
916
.10.1080/01495739.2017.1318689
48.
Ramteke
,
P. M.
,
Kumar
,
V.
,
Sharma
,
N.
, and
Panda
,
S. K.
,
2022
, “
Geometrical Nonlinear Numerical Frequency Prediction of Porous Functionally Graded Shell Panel Under Thermal Environment
,”
Int. J. Non. Linear. Mech.
,
143
, p.
104041
.10.1016/j.ijnonlinmec.2022.104041
49.
Bathe
,
K.-J.
,
1982
,
Finite Element Procedure in Engineering Analysis
,
Prentice Hall
, Hoboken,
NJ
.
50.
Reddy
,
J. N.
,
2004
,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
, Oxford, UK.
51.
Mohanta
,
N.
, and
Acharya
,
S. K.
,
1970
, “
Investigation of Mechanical Properties of Luffa Cylindrica Fibre Reinforced Epoxy Hybrid Composite
,”
Int. J. Eng. Sci. Technol.
,
7
(
1
), pp.
1
10
.10.4314/ijest.v7i1.1
52.
Papanicolaou
,
G. C.
,
Psarra
,
E.
, and
Anastasiou
,
D.
,
2015
, “
Manufacturing and Mechanical Response Optimization of Epoxy Resin/Luffa Cylindrica Composite
,”
J. Appl. Polym. Sci.
,
132
(
22
), pp.
1
12
.10.1002/app.41992
53.
Shen
,
H.-S.
,
Chen
,
X.
,
Guo
,
L.
,
Wu
,
L.
, and
Huang
,
X.-L.
,
2015
, “
Nonlinear Vibration of FGM Doubly Curved Panels Resting on Elastic Foundations in Thermal Environments
,”
Aerosp. Sci. Technol.
,
47
, pp.
434
446
.10.1016/j.ast.2015.10.011
You do not currently have access to this content.