Abstract

Elbows in pressurized tubular structures are increasingly stressed by loadings with radial and tangential stresses. These stresses are completely different from those of straight tubular structures. Through the finite element method and using the ABAQUS computer code, the damage of a tubular structure in X60 of an elbow attached by straight parts stressed in internal pressure and in the moment of bending in closing is analyzed in this work. As a proposal for reinforcement, this structure is previously heat-treated and partially at the level of the elbow. The formulation of the heat-treated X60 material is based on the concept of functional graded materials (FGM), where the graduation by volume fraction between the metal in its base and that previously heat-affected named heat affected zone (HAZ) is under a power function of a parameter named volume fraction index (n). The graded properties of HAZ in the base metal along the thickness of the tubular structure are introduced by a row of finite elements using a proposed meshing technique. The elastic–plastic behavior of the HAZ-base metal mixture under the Voce model follows the equivalent stress flow theory of Von Mises. The technique of extended finite element technique (XFEM) in the damage and the mesh proposed in the graduation, were used to evaluate the various parameters, such as: the internal pressure and the heat treatment (surface and index n). The latter condition the response of the structure and the level of its damage.

References

1.
Tilbrook
,
M.
,
Rozenburg
,
K.
,
Steffler
,
E.
,
Rutgers
,
L.
, and
Hoffman
,
M.
,
2006
, “
Crack Propagation Paths in Layered, Graded Composites
,”
Compos. Part B
,
37
(
6
), pp.
490
498
.10.1016/j.compositesb.2006.02.012
2.
Shabana
,
Y.
, and
Noda
,
N.
,
2001
, “
Thermo-Elasto-Plastic Stresses in Functionally Graded Materials Subjected to Thermal Loading Taking Residual Stresses of the Fabrication Process Into Consideration
,”
Compos. Part B
,
32
(
2
), pp.
111
121
.10.1016/S1359-8368(00)00049-4
3.
Zivelonghi
,
A.
, and
You
,
J.-H.
,
2014
, “
Mechanism of Plastic Damage and Fracture of a Particulate Tungsten-Reinforced Copper Composite: A Microstructure-Based Finite Element Study
,”
Comput. Mater. Sci.
,
84
, pp.
318
326
.10.1016/j.commatsci.2013.11.067
4.
Ahmed-Bensoltane
,
A.
,
Mokhtari
,
M.
,
Benzaama
,
H.
,
Samet
,
K.
,
Benrouba
,
H.
, and
Abdelouahed
,
E.
,
2023
, “
Using XFEM Technique to Predict the Effect of Default on the Damage of Steel Pipe Reduced-Connection Under Bending and Pressure Loading
,”
Int. J. Steel Struct.
,
23
(
1
), pp.
316
330
.10.1007/s13296-022-00697-w
5.
Von Karman
,
T.
,
1911
, “
Uber Die Formanderung Dunnwandiger Rohre
,”
Z. Des Vereines Deuticher Ingenieure
,
55
, pp.
1889
1895
.
6.
Rodabaugh
,
E. C.
, and
George
,
H. H.
,
1957
, “
Effect of Internal Pressure on Flexibility and Stress Intensification Factors of Curved Pipe or Welding Elbows
,”
Trans. ASME
,
79
(
4
), pp.
939
948
.10.1115/1.4013198
7.
Kim
,
M.
,
Kim
,
J.
,
Kim
,
M. K.
,
Choi
,
J.-B.
,
Huh
,
N.-S.
, and
Kim
,
K.
,
2020
, “
Plastic Limit Pressure Solutions for Elbows With Slant Through-Wall Cracks
,”
ASME J. Pressure Vessel Technol.
,
142
(
5
), p.
051502
.10.1115/1.4046885
8.
Sobel
,
L.
, and
Newman
,
S.
,
1980
, “
Comparison of Experimental and Simplified Analytical Results for the in-Plane Plastic Bending and Buckling of an Elbow
,”
ASME J. Pressure Vessel Technol.
,
102
(
4
), pp.
400
409
.10.1115/1.3263351
9.
Dhalla
,
A.
,
1987
, “
Collapse Characteristics of a Thin-Walled Elbow: Validation of an Analytical Procedure
,”
ASME J. Pressure Vessel Technol.
,
109
(
4
), pp.
394
401
.10.1115/1.3264922
10.
Gresnigt
,
A.
, and
Van Foeken
,
R.
,
1985
, “
Preofresultaten Van Proeven op Gladde Bochten En Vergelijking Daarvan Met De in OPL 85-333 Gegeven Rekenregels
,” Institute for Construction Materials and Structures, TNO-IBBC, Report No. OPL
85
334
.
11.
Gresnigt
,
A.
, and
Van Foeken
,
R.
,
1995
, “
Strength and Deformation Capacity of Bends in Pipelines
,”
Int. J. Offshore Polar Eng.
,
5
(
4
), pp.
294
307
.https://onepetro.org/IJOPE/article-abstract/26862/Strength-And-Deformation-Capacity-Of-Bends-In?redirectedFrom=fulltext
12.
Abdelouahed
,
E.
,
Mokhtari
,
M.
, and
Benzaama
,
H.
,
2019
, “
Finite Element Analysis of the Thermo-Mechanical Behavior of Composite Pipe Elbows Under Bending and Pressure Loading
,”
Frat. ed Integrita Strutt.
, ′
13
(
49
), pp.
698
713
.10.3221/IGF-ESIS.49.63
13.
Shao
,
Z.
,
2005
, “
Mechanical and Thermal Stresses of a Functionally Graded Circular Hollow Cylinder With Finite Length
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
155
163
.10.1016/j.ijpvp.2004.09.007
14.
Kandil
,
A.
,
El-Kady
,
A.
, and
El-Kafrawy
,
A.
,
1995
, “
Transient Thermal Stress Analysis of Thick-Walled Cylinders
,”
Int. J. Mech. Sci.
,
37
(
7
), pp.
721
732
.10.1016/0020-7403(94)00105-S
15.
Nair
,
G. S.
,
Dash
,
S. R.
, and
Mondal
,
G.
,
2022
, “
Numerical Study of Horizontally Bent Buried Steel Pipelines Subjected to Oblique Faulting
,”
ASME J. Pressure Vessel Technol.
,
144
(
5
), p.
051803
.10.1115/1.4054686
16.
Attia
,
S.
,
Mohareb
,
M.
,
Martens
,
M.
,
Yoosef-Ghodsi
,
N.
,
Li
,
Y.
, and
Adeeb
,
S.
,
2021
, “
Numerical Assessment of Elbow Element Response Under Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
143
(
5
), p. 051302.10.1115/1.4050091
17.
Liu
,
C.
,
Yu
,
D.
,
Akram
,
W.
, and
Chen
,
X.
,
2018
, “
Thermal Aging Effect on the Ratcheting Behavior of Pressurized Elbow Pipe
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p. 021604.10.1115/1.4039073
18.
Greenstreet
,
W.
,
1978
, Experimental Study of Plastic Responses of Pipe Elbows, Oak Ridge National Lab, Oak Ridge, TN, Report No. ORNL/NUREG--24.
19.
Hilsenkopf
,
P.
,
Boneh
,
B.
, and
Sollogoub
,
P.
,
1988
, “
Experimental Study of Behavior and Functional Capability of Ferritic Steel Elbows and Austenitic Stainless Steel Thin-Walled Elbows
,”
Int. J. Pressure Vessels Piping
,
33
(
2
), pp.
111
128
.10.1016/0308-0161(88)90065-8
20.
Karamanos
,
S. A.
,
2016
, “
Mechanical Behavior of Steel Pipe Bends: An Overview
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p. 041203.10.1115/1.4031940
21.
Nagamori
,
H.
, and
Takahashi
,
K.
,
2017
, “
The Revised Universal Slope Method to Predict the Low-Cycle Fatigue Lives of Elbow and Tee Pipes
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p.
051402
.10.1115/1.4037002
22.
Tan
,
Y.
,
Matzen
,
V.
, and
Yu
,
L.
,
2002
, “
Correlation of Test and FEA Results for the Nonlinear Behavior of Straight Pipes and Elbows
,”
ASME J. Pressure Vessel Technol.
,
124
(
4
), pp.
465
475
.10.1115/1.1493806
23.
Chattopadhyay
,
J.
,
Nathani
,
D.
,
Dutta
,
B.
, and
Kushwaha
,
H.
,
2000
, “
Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
431
436
.10.1115/1.1285988
24.
Ueda
,
S.
,
2001
, “
Elastoplastic Analysis of w-cu Functionally Graded Materials Subjected to a Thermal Shock by Micromechanical Model
,”
J. Thermal Stresses
,
24
(
7
), pp.
631
649
.10.1080/014957301300194814
25.
Kiani
,
Y.
, and
Eslami
,
M.
,
2015
, “
Thermal Postbuckling of Imperfect Circular Functionally Graded Material Plates: Examination of Voigt, Mori–Tanaka, and Self-Consistent Schemes
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p. 021201.10.1115/1.4026993
26.
Jabbari
,
M.
,
Mousavi
,
S.
, and
Kiani
,
M.
,
2017
, “
Solution for Equation of Two-Dimensional Transient Heat Conduction in Functionally Graded Material Hollow Sphere With Piezoelectric Internal and External Layers
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p. 011201.10.1115/1.4033702
27.
Tilbrook
,
M.
,
Rutgers
,
L.
,
Moon
,
R. J.
, and
Hoffman
,
M.
,
2005
, “
Fracture and Fatigue Crack Propagation in Graded Composites
,”
Mater. Sci. Forum
,
492–493
, pp.
573
580
.10.4028/www.scientific.net/MSF.492-493.573
28.
Gunes
,
R.
,
Aydin
,
M.
,
Apalak
,
M. K.
, and
Reddy
,
J.
,
2014
, “
Experimental and Numerical Investigations of Low Velocity Impact on Functionally Graded Circular Plates
,”
Compos. Part B
,
59
, pp.
21
32
.10.1016/j.compositesb.2013.11.022
29.
Jabbari
,
M.
, and
Kiani
,
M.
,
2017
, “
General Solution for Equation of Transient Heat Conduction in Functionally Graded Material Hollow Cylinder With Piezoelectric Internal and External Layers
,”
ASME J. Pressure Vessel Technol.
,
139
(
5
), p. 051206.10.1115/1.4037195
30.
Jabbari
,
M.
,
Meshkini
,
M.
, and
Eslami
,
M.
,
2016
, “
Mechanical and Thermal Stresses in FGPPM Hollow Cylinder Due to Radially Symmetric Loads
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p. 011207.10.1115/1.4031372
31.
Toi
,
Y.
, and
Lee
,
J.-M.
,
2002
, “
Thermal Elasto-Viscoplastic Damage Behavior of Structural Members in Hot-Dip Galvanization
,”
Int. J. Damage Mech.
,
11
(
2
), pp.
171
185
.10.1106/105678902023083
32.
Gunes
,
R.
,
Aydin
,
M.
,
Apalak
,
M. K.
, and
Reddy
,
J.
,
2011
, “
The Elasto-Plastic Impact Analysis of Functionally Graded Circular Plates Under Low-Velocities
,”
Compos. Struct.
,
93
(
2
), pp.
860
869
.10.1016/j.compstruct.2010.07.008
33.
Faghih
,
S.
,
Jahed
,
H.
, and
Behravesh
,
S. B.
,
2018
, “
Variable Material Properties Approach: A Review on Twenty Years of Progress
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p. 050803.10.1115/1.4039068
34.
Sadeghian
,
M.
, and
Ekhteraei Toussi
,
H.
,
2014
, “
Axisymmetric Elastoplasticity of a Temperature-Sensitive Functionally Graded Cylindrical Vessel
,”
ASME J. Pressure Vessel Technol.
,
136
(
6
), p. 061203.10.1115/1.4027445
35.
Zhang
,
Z. J.
, and
Paulino
,
G. H.
,
2005
, “
Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials
,”
Int. J. Plasticity
,
21
(
6
), pp.
1195
1254
.10.1016/j.ijplas.2004.06.009
36.
Xu
,
X.-P.
, and
Needleman
,
A.
,
1996
, “
Numerical Simulations of Dynamic Crack Growth Along an Interface
,”
Int. J. Fract.
,
74
(
4
), pp.
289
324
.10.1007/BF00035845
37.
Bellali
,
M. A.
,
Serier
,
B.
,
Mokhtari
,
M.
,
Campilho
,
R. D.
,
Lebon
,
F.
, and
Fekirini
,
H.
,
2021
, “
XFEM and CZM Modeling to Predict the Repair Damage by Composite Patch of Aircraft Structures: Debonding Parameters
,”
Compos. Struct.
,
266
, p.
113805
.10.1016/j.compstruct.2021.113805
38.
Shadlou
,
S.
, and
Taheri
,
F.
,
2017
, “
On the Effectiveness of Composites for Repair of Pipelines Under Various Combined Loading Conditions: A Computational Approach Using the Cohesive Zone Method
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p. 021405.10.1115/1.4035081
39.
Bellali
,
M. A.
,
Mokhtari
,
M.
,
Benzaama
,
H.
,
Hamida
,
F.
,
Serier
,
B.
, and
Madani
,
K.
,
2020
, “
Using CZM and XFEM to Predict the Damage to Aluminum Notched Plates Reinforced With a Composite Patch
,”
J. Mech. Mater. Struct.
,
15
(
2
), pp.
185
201
.10.2140/jomms.2020.15.185
40.
Benamar
,
B.
,
Mokhtari
,
M.
,
Madani
,
K.
, and
Benzaama
,
H.
,
2019
, “
Using a Cohesive Zone Modeling to Predict the Compressive and Tensile Behavior on the Failure Load of Single Lap Bonded Joint
,”
Frat. ed Integrita Strutt.
,
13
(
50
), pp.
112
125
.10.3221/IGF-ESIS.50.11
41.
Shojaei
,
A.
, and
Li
,
G.
,
2013
, “
Viscoplasticity Analysis of Semicrystalline Polymers: A Multiscale Approach Within Micromechanics Framework
,”
Int. J. Plasticity
,
42
, pp.
31
49
.10.1016/j.ijplas.2012.09.014
42.
Shojaei
,
A.
,
Li
,
G.
,
Fish
,
J.
, and
Tan
,
P.
,
2014
, “
Multiscale Constitutive Modeling of Ceramic Matrix Composites by Continuum Damage Mechanics
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
4068
4081
.10.1016/j.ijsolstr.2014.07.026
43.
Trouvay & Cauvin,
2001
,
Tubes De Conduite/Line Pipes—Piping Equipment
,
Trouvay & Cauvin
, ASTM International, West Conshohocken, PA.
44.
Karamanos
,
S. A.
,
Antoniou
,
K.
,
Keil
,
B.
, and
Card
,
R. J.
,
2016
, “
Finite Element Analysis of the Mechanical Behavior of Mitered Steel Pipe Elbows Under Bending and Pressure
,”
Pipelines 2016
, pp.
1255
1269
.10.1061/9780784479957.117
45.
Ashrafizadeh
,
H.
,
Karimi
,
M.
, and
Ashrafizadeh
,
F.
,
2013
, “
Failure Analysis of a High Pressure Natural Gas Pipe Under Split Tee by Computer Simulations and Metallurgical Assessment
,”
Eng. Failure Anal.
,
32
, pp.
188
201
.10.1016/j.engfailanal.2013.03.013
46.
Santos
,
R. O.
,
Moreira
,
L. P.
,
Butuc
,
M. C.
,
Vincze
,
G.
, and
Pereira
,
A. B.
,
2022
, “
Damage Analysis of Third-Generation Advanced High-Strength Steel Based on the Gurson–Tvergaard–Needleman (GTN) Model
,”
Metals
,
12
(
2
), p.
214
.10.3390/met12020214
47.
Kim
,
J.-K.
,
Kim
,
D.-S.
, and
Takeda
,
N.
,
1995
, “
Notched Strength and Fracture Criterion in Fabric Composite Plates Containing a Circular Hole
,”
J. Compos. Mater.
,
29
(
7
), pp.
982
998
.10.1177/002199839502900706
48.
Jing
,
J.
,
Gao
,
F.
,
Johnson
,
J.
,
Liang
,
F. Z.
,
Williams
,
R. L.
, and
Qu
,
J.
,
2008
, “
Simulation of Dynamic Fracture Along Solder-Pad Interfaces Using a Cohesive Zone Model
,”
ASME
Paper No. IMECE2008-68891.10.1115/IMECE2008-68891
49.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P.-E.
,
1976
, ’ “
Analysis of Crack formation and crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.10.1016/0008-8846(76)90007-7
50.
Marur
,
P. R.
,
1999
,
Fracture Behaviour of Functionally Graded Materials
,
Auburn University
, Auburn, AL.
51.
Elruby
,
A.
,
Nakhla
,
S.
, and
Hussein
,
A.
,
2018
, “
Automating XFEM Modeling Process for Optimal Failure Predictions
,”
Math. Probl. Eng.
,
2018
, pp.
1
14
.10.1155/2018/1654751
52.
Dassault
Systemes
,
D.
,
2014
,
Abaqus Documentation
, Dassault Systemes,
Providence
,
RI
.
53.
Petrov
,
N. A.
,
Gorbatikh
,
L.
, and
Lomov
,
S. V.
,
2018
, “
A Parametric Study Assessing Performance of Extended Finite Element Method in Application to the Cracking Process in Cross-Ply Composite Laminates
,”
Compos. Struct.
,
187
, pp.
489
497
.10.1016/j.compstruct.2017.12.014
54.
Taylor
,
R. L.
,
Beresford
,
P. J.
, and
Wilson
,
E. L.
,
1976
, “
A Non-Conforming Element for Stress Analysis
,”
Int. J. Numer. Methods Eng.
,
10
(
6
), pp.
1211
1219
.10.1002/nme.1620100602
55.
Hammadi
,
N.
,
Mokhtari
,
M.
,
Benzaama
,
H.
,
Madani
,
K.
,
Brakna
,
A.
, and
Abdelouahed
,
E.
,
2020
, “
Using XFEM to Predict the Damage With Temperature of the Steel Pipe Elbows Under Bending and Pressure Loading
,”
Frat. ed Integrita Strutt.
,
15
(
55
), pp.
345
359
.10.3221/IGF-ESIS.55.27
You do not currently have access to this content.