Abstract

This article investigates the influences of different material distribution types and flow profiles in the cross section on dynamics of cantilevered axially functionally graded (AFG) pipe. Functionally graded material as a designable material, its appliance in structures can enhance the stability of the structure by adequately choosing the material constituents and arranging constituents' distribution. The governing equation of the pipe system is derived based on the Euler–Bernoulli beam theory and numerically solved by the differential quadrature method (DQM). The influences of different volume fraction function and nonuniform flow velocity distribution on the natural frequencies and average critical flow velocities are discussed according to the numerical results. It can be concluded that the enhanced effect of the AFG material is mainly caused by an increment in the amount of stiffer constituent. With the same amount, pure distribution difference in exponential or power function type that brings stiffer fixed end results in slightly higher critical velocity against flutter. Ignoring the nonuniform flow velocity distribution leads to an overestimation of the pipe's stability and the overestimation is even apparent on AFG pipe. Nonuniform velocity distribution affects the stable flow velocity area and appearance of restabilizing phenomena.

Reference

1.
Paı¨doussis
,
M. P.
, and
Li
,
G. X.
,
1993
, “
Pipes Conveying Fluid: A Model Dynamical Problem
,”
J. Fluids Struct.
,
7
(
2
), pp.
137
204
.10.1006/jfls.1993.1011
2.
Ibrahim
,
R. A.
,
2011
, “
Mechanics of Pipes Conveying Fluids-Part II: Applications and Fluidelastic Problems
,”
ASME J. Pressure Vessel Technol.
,
133
(
2
), p. 024001.10.1115/1.4001270
3.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
Appl. Mech. Rev
,
60
(
1-6
), pp.
195
216
.10.1115/1.2777164
4.
Gupta
,
A.
, and
Talha
,
M.
,
2015
, “
Recent Development in Modeling and Analysis of Functionally Graded Materials and Structures
,”
Prog. Aeosp. Sci.
,
79
, pp.
1
14
.10.1016/j.paerosci.2015.07.001
5.
Sheng
,
G. G.
, and
Wang
,
X.
,
2010
, “
Dynamic Characteristics of Fluid-Conveying Functionally Graded Cylindrical Shells Under Mechanical and Thermal Loads
,”
Compos. Struct.
,
93
(
1
), pp.
162
170
.10.1016/j.compstruct.2010.06.004
6.
Liang
,
F.
,
Yang
,
X.-D.
,
Bao
,
R.-D.
, and
Zhang
,
W.
,
2016
, “
Frequency Analysis of Functionally Graded Curved Pipes Conveying Fluid
,”
Adv. Mater. Sci. Eng.
,
2016
, pp.
1
9
.10.1155/2016/7574216
7.
Wang
,
Z.-M.
, and
Liu
,
Y.-Z.
,
2016
, “
Transverse Vibration of Pipe Conveying Fluid Made of Functionally Graded Materials Using a Symplectic Method
,”
Nucl. Eng. Des.
,
298
, pp.
149
159
.10.1016/j.nucengdes.2015.12.007
8.
Deng
,
J.
,
Liu
,
Y.
,
Zhang
,
Z.
, and
Liu
,
W.
,
2017
, “
Stability Analysis of Multi-Span Viscoelastic Functionally Graded Material Pipes Conveying Fluid Using a Hybrid Method
,”
Eur. J. Mech. A-Solids
,
65
, pp.
257
270
.10.1016/j.euromechsol.2017.04.003
9.
Liang
,
F.
,
Gao
,
A.
, and
Yang
,
X.-D.
,
2020
, “
Dynamical Analysis of Spinning Functionally Graded Pipes Conveying Fluid With Multiple Spans
,”
Appl. Math. Model.
,
83
, pp.
454
469
.10.1016/j.apm.2020.03.011
10.
Cao
,
J.
,
Liu
,
Y.
, and
Liu
,
W.
,
2018
, “
The Effect of Two Cases of Temperature Distributions on Vibration of Fluid-Conveying Functionally Graded Thin-Walled Pipes
,”
J. Strain Anal. Eng. Des.
,
53
(
5
), pp.
324
331
.10.1177/0309324718770594
11.
Tang
,
Y.
, and
Yang
,
T.
,
2018
, “
Post-Buckling Behavior and Nonlinear Vibration Analysis of a Fluid-Conveying Pipe Composed of Functionally Graded Material
,”
Compos. Struct.
,
185
, pp.
393
400
.10.1016/j.compstruct.2017.11.032
12.
Khodabakhsh
,
R.
,
Saidi
,
A. R.
, and
Bahaadini
,
R.
,
2020
, “
An Analytical Solution for Nonlinear Vibration and Post-Buckling of Functionally Graded Pipes Conveying Fluid Considering the Rotary Inertia and Shear Deformation Effects
,”
Appl. Ocean Res.
,
101
, p.
102277
.10.1016/j.apor.2020.102277
13.
Dehrouyeh-Semnani
,
A. M.
,
Dehdashti
,
E.
,
Yazdi
,
M. R. H.
, and
Nikkhah-Bahrami
,
M.
,
2019
, “
Nonlinear Thermo-Resonant Behavior of Fluid-Conveying FG Pipes
,”
Int. J. Eng. Sci.
,
144
, p.
103141
.10.1016/j.ijengsci.2019.103141
14.
Reddy
,
R. S.
,
Panda
,
S.
, and
Gupta
,
A.
,
2020
, “
Nonlinear Dynamics of an Inclined FG Pipe Conveying Pulsatile Hot Fluid
,”
Int. J. Non-Linear Mech.
,
118
, p.
103276
.10.1016/j.ijnonlinmec.2019.103276
15.
Guo
,
Q.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Li
,
B.
, and
Yao
,
Q.
,
2019
, “
Improved Resonance Reliability and Global Sensitivity Analysis of Multi-Span Pipes Conveying Fluid Based on Active Learning Kriging Model
,”
Int. J. Press. Vessel. Pip.
,
170
, pp.
92
101
.10.1016/j.ijpvp.2019.01.016
16.
Heshmati
,
M.
,
2020
, “
Influence of an Eccentricity Imperfection on the Stability and Vibration Behavior of Fluid-Conveying Functionally Graded Pipes
,”
Ocean Eng.
,
203
, p.
107192
.10.1016/j.oceaneng.2020.107192
17.
An
,
C.
, and
Su
,
J.
,
2017
, “
Dynamic Behavior of Axially Functionally Graded Pipes Conveying Fluid
,”
Math. Probl. Eng.
,
2017
, pp.
1
11
.10.1155/2017/6789634
18.
Dai
,
J.
,
Liu
,
Y.
,
Liu
,
H.
,
Miao
,
C.
, and
Tong
,
G.
,
2019
, “
A Parametric Study on Thermo-Mechanical Vibration of Axially Functionally Graded Material Pipe Conveying Fluid
,”
Int. J. Mech. Mater. Des.
,
15
(
4
), pp.
715
726
.10.1007/s10999-018-09439-5
19.
Babaei
,
H.
,
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2020
, “
Large Amplitude Free Vibrations of FGM Shallow Curved Tubes in Thermal Environment
,”
Smart Struct. Syst.
,
25
(
6
), pp.
693
705
.10.12989/sss.2020.25.6.693
20.
Lu
,
Z.-Q.
,
Zhang
,
K.-K.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2020
, “
Nonlinear Vibration Effects on the Fatigue Life of Fluid-Conveying Pipes Composed of Axially Functionally Graded Materials
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1091
1104
.10.1007/s11071-020-05577-8
21.
Hosseini
,
M.
, and
Fazelzadeh
,
S. A.
,
2011
, “
Thermomechanical Stability Analysis of Functionally Graded Thin-Walled Cantilever Pipe With Flowing Fluid Subjected to Axial Load
,”
Int. J. Struct. Stability Dyn.
,
11
(
03
), pp.
513
534
.10.1142/S0219455411004154
22.
Rastgoo
,
M.
,
Fazelzadeh
,
S. A.
,
Eftekhari
,
M.
, and
Hosseini
,
M.
,
2017
, “
Flow-Induced Flutter Instability of Functionally Graded Cantilever Pipe
,”
Int. J. Acoust. Vib.
,
22
(
3
), pp.
320
325
.10.20855/ijav.2017.22.3477
23.
Shen
,
H.
,
Paidoussis
,
M. P.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2014
, “
The Beam-Mode Stability of Periodic Functionally-Graded-Material Shells Conveying Fluid
,”
J. Sound Vib.
,
333
(
10
), pp.
2735
2749
.10.1016/j.jsv.2014.01.002
24.
Zhou
,
X.-w.
,
Dai
,
H.-L.
, and
Wang
,
L.
,
2018
, “
Dynamics of Axially Functionally Graded Cantilevered Pipes Conveying Fluid
,”
Compos. Struct.
,
190
, pp.
112
118
.10.1016/j.compstruct.2018.01.097
25.
Mirtalebi
,
S. H.
,
Ebrahimi-Mamaghani
,
A.
, and
Ahmadian
,
M. T.
,
2019
, “
Vibration Control and Manufacturing of Intelligibly Designed Axially Functionally Graded Cantilevered Macro/Micro-Tubes
,”
IFAC Papersonline
,
52
(
10
), pp.
382
387
.10.1016/j.ifacol.2019.10.061
26.
Ebrahimi-Mamaghani
,
A.
,
Sotudeh-Gharebagh
,
R.
,
Zarghami
,
R.
, and
Mostoufi
,
N.
,
2022
, “
Thermo-Mechanical Stability of Axially Graded Rayleigh Pipes
,”
Mech. Based Des. Struct. Machines
,
50
(
2
), pp.
412
441
.10.1080/15397734.2020.1717967
27.
Hellum
,
A. M.
,
Mukherjee
,
R.
, and
Hull
,
A. J.
,
2010
, “
Dynamics of Pipes Conveying Fluid With Non-Uniform Turbulent and Laminar Velocity Profiles
,”
J. Fluids Struct.
,
26
(
5
), pp.
804
813
.10.1016/j.jfluidstructs.2010.05.001
28.
Wang
,
L.
, and
Ni
,
Q.
,
2008
, “
In-Plane Vibration Analyses of Curved Pipes Conveying Fluid Using the Generalized Differential Quadrature Rule
,”
Comput. Struct.
,
86
(
1–2
), pp.
133
139
.10.1016/j.compstruc.2007.05.011
29.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2001
, “
Vibration Analysis of Beams Using the Generalized Differential Quadrature Rule and Domain Decomposition
,”
J. Sound Vib.
,
246
(
3
), pp.
461
481
.10.1006/jsvi.2001.3667
30.
Païdoussis
,
M. P.
,
1998
, “
3 - Pipes Conveying Fluid: Linear Dynamics I
,”
Fluid-Structure Interactions
,
M. P.
Païdoussis
ed.,
Academic Press
, Cambridge, MA, pp.
59
195
.
You do not currently have access to this content.