Abstract

Buried pipelines may be subjected to different seismic hazards along their path, among which faulting can severely affect their integrity by causing large strains in the pipeline confined to a local zone during an earthquake. Historically, the most catastrophic pipeline damages are the ones resulting from oblique faulting due to the severity of ground distortion and induction of compression in the pipeline. Moreover, in the areas of potential ground rupture, the presence of bends near the fault crossing may lead to large strains in the pipeline. Most design guidelines recommend laying the pipelines without field bends, elbows, and flanges near to fault zone. However, bends are sometimes inevitable in the construction of pipelines, and a situation may arise when the pipeline crosses the fault line at/near the bends. Past studies on the response of bent buried pipelines subjected to oblique faulting are very limited. Therefore, the present numerical investigation aims to examine the response of buried continuous steel pipelines with field bends crossing an oblique fault by performing an extensive parametric study. The results obtained are reviewed and presented in the paper. Suitable relationships in terms of modification factors over the response of a straight pipeline as a function of a few critical parameters are determined using regression analyses. It is concluded that providing bends to the pipeline can significantly affect its structural response when subjected to oblique faulting, especially when it is operating at its design internal pressure.

References

1.
O'Rourke
,
M. J.
, and
Liu
,
X.
,
1999
, “
Response of Buried Pipelines Subject to Earthquake Effects
,”
Monograph No. 3
,
Multidisciplinary Center for Earthquake Engineering Research (MCEER)
,
New York
, p.
276
.
2.
Nair
,
G. S.
,
Dash
,
S. R.
, and
Mondal
,
G.
,
2018
, “
Review of Pipeline Performance During Earthquakes Since 1906
,”
ASCE J. Perform. Const. Facil.
,
32
(
6
), p.
04018083
.10.1061/(ASCE)CF.1943-5509.0001214
3.
Rofooei
,
F. R.
,
Jalali
,
H. H.
,
Attari
,
N. K. A.
,
Kenarangi
,
H.
, and
Samadian
,
M.
,
2015
, “
Parametric Study of Buried Steel and High Density Polyethylene Gas Pipelines Due to Oblique-Reverse Faulting
,”
Can. J. Civ. Eng.
,
42
(
3
), pp.
178
189
.10.1139/cjce-2014-0047
4.
McCue
,
K. F.
,
1994
, “
The Risk to Lifelines From Earthquakes in Australia and in Canberra in Particular
,” Proc., Australian Earthquake Engineering Seminar,
Australian Earthquake Engineering Society (
AEES
),
Canberra, Australia
, pp.
9
18
.https://aees.org.au/wp-content/uploads/2013/11/Page-09-McCue.pdf
5.
Jones
,
T.
,
1988
, “
Bicentennial Earthquakes at Tennant Creek
,”
BMR Research Newsletter No. 8
,
Geoscience
,
Australia
.
6.
FEMA
,
1992
, “
Earthquake Resistant Construction of Gas and Liquid Fuel Pipeline Systems Serving or Regulated by the Federal Government
,” Earthquake Hazard Reduction Series 67,
Federal Emergency Management Agency
(
FEMA
), Gaithersburg, MD, p.
77
.https://nehrpsearch.nist.gov/static/files/NIST/PB94161999.pdf
7.
Newmark
,
N. M.
, and
Hall
,
W. J.
,
1975
, “
Pipeline Design to Resist Large Fault Displacement
,”
Proceedings of U. S. National Conference on Earthquake Engineering
,
Earthquake Engineering Research Institute (EERI)
,
Ann Arbor, MI
, pp.
416
425
.
8.
Kennedy
,
R. P.
,
Chow
,
A. W.
, and
William
,
R. A.
,
1977
, “
Fault Movement Effects on Buried Oil Pipeline
,”
ASCE J. Transport. Eng.
,
103
(
5
), pp.
617
633
.10.1061/TPEJAN.0000659
9.
Wang
,
L. R. L.
, and
Yeh
,
Y. H.
,
1985
, “
A Refined Seismic Analysis and Design of Buried Pipeline for Fault Movement
,”
Earthquake Eng. Struct. Dyn.
,
13
(
1
), pp.
75
96
.10.1002/eqe.4290130109
10.
Karamitros
,
D. K.
,
Bouckovalas
,
G. D.
, and
Kouretzis
,
G. P.
,
2007
, “
Stress Analysis of Buried Steel Pipelines at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
27
(
3
), pp.
200
211
.10.1016/j.soildyn.2006.08.001
11.
Trifonov
,
O. V.
, and
Cherniy
,
V. P.
,
2010
, “
A Semi-Analytical Approach to a Nonlinear Stress – Strain Analysis of Buried Steel Pipelines Crossing Active Faults
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1298
1308
.10.1016/j.soildyn.2010.06.002
12.
Takada
,
S.
,
Liang
,
J. W.
, and
Li
,
T.
,
1998
, “
Shell-Mode Response of Buried Pipelines to Large Fault Movements
,”
JSCE J. Struct. Eng.
,
4
4A, pp.
1637
1646
.http://library.jsce.or.jp/jsce/open/00127/1998/44-A3-1637.pdf
13.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2010
, “
Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1361
1376
.10.1016/j.soildyn.2010.06.011
14.
Joshi
,
S.
,
Prashant
,
A.
,
Deb
,
A.
, and
Jain
,
S. K.
,
2011
, “
Analysis of Buried Pipelines Subjected to Reverse Fault Motion
,”
Soil Dyn. Earthquake Eng.
,
31
(
7
), pp.
930
940
.10.1016/j.soildyn.2011.02.003
15.
Liu
,
X.
,
Zhang
,
H.
,
Li
,
M.
,
Xia
,
M.
,
Zheng
,
W.
,
Wu
,
K.
, and
Han
,
Y.
,
2016
, “
Effects of Steel Properties on the Local Buckling Response of High Strength Pipelines Subjected to Reverse Faulting
,”
J. Natural Gas Sci. Eng.
,
33
, pp.
378
387
.10.1016/j.jngse.2016.05.036
16.
Ha
,
D.
,
Abdoun
,
T. H.
,
O'Rourke
,
M. J.
,
Symans
,
M. D.
,
O'Rourke
,
T. D.
,
Palmer
,
M. C.
, and
Stewart
,
H. E.
,
2008
, “
Centrifuge Modeling of Earthquake Effects on Buried High-Density Polyethylene (HDPE) Pipelines Crossing Fault Zones
,”
ASCE J. Geotech. Geoenviron. Eng.
,
134
(
10
), pp.
1501
1515
.10.1061/(ASCE)1090-0241(2008)134:10(1501)
17.
Abdoun
,
T. H.
,
Ha
,
D.
,
O'Rourke
,
M. J.
,
Symans
,
M. D.
,
O'Rourke
,
T. D.
,
Palmer
,
M. C.
, and
Stewart
,
H. E.
,
2009
, “
Factors Influencing the Behavior of Buried Pipelines Subjected to Earthquake Faulting
,”
Soil Dyn. Earthquake Eng.
,
29
(
3
), pp.
415
427
.10.1016/j.soildyn.2008.04.006
18.
Rofooei
,
F. R.
,
Jalali
,
H. H.
,
Attari
,
N. K. A.
, and
Alavi
,
M.
,
2012
, “
Full-Scale Laboratory Testing of Buried Pipelines Subjected to Permanent Ground Displacement Caused by Reverse Faulting
,” Proceedings of 15th World Conference on Earthquake Engineering (
15WCEE
),
International Association for Earthquake Engineering (IAEE)
,
Lisboa, Portugal
, p.
10
.https://www.researchgate.net/publication/235811299_Full-Scale_Laboratory_Testing_of_Buried_Pipelines_Subjected_to_Permanent_Ground_Displacement_Caused_by_Reverse_Faulting
19.
Li
,
H.
,
Xue
,
N.
,
Li
,
X.
, and
Li
,
Z.
,
2012
, “
An in-Situ Experimental Study on Buried Pipelines With Internal Pressure Subject to a Simulated Reverse-Slip Fault Movement
,” Proceedings of 15th World Conference on Earthquake Engineering (
15WCEE
),
International Association for Earthquake Engineering (IAEE)
,
Lisboa, Portugal
, p.
10
.https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2106.pdf
20.
Rojhani
,
M.
,
Moradi
,
M.
,
Galandarzadeh
,
A.
, and
Takada
,
S.
,
2012
, “
Centrifuge Modeling of Buried Continuous Pipelines Subjected to Reverse Faulting
,”
Can. Geotech. J.
,
49
(
6
), pp.
659
670
.10.1139/t2012-022
21.
Jalali
,
H. H.
,
Rofooei
,
F. R.
,
Attari
,
N. K. A.
, and
Samadian
,
M.
,
2016
, “
Experimental and Finite Element Study of the Reverse Faulting Effects on Buried Continuous Steel Gas Pipelines
,”
Soil Dyn. Earthquake Eng.
,
86
, pp.
1
14
.10.1016/j.soildyn.2016.04.006
22.
Natarajan
,
R.
, and
Blomfield
,
J. A.
,
1975
, “
Stress Analysis of Curved Pipes With End Restraints
,”
Comput. Struct.
,
5
(
2–3
), pp.
187
196
.10.1016/0045-7949(75)90009-7
23.
Ohtsubo
,
H.
, and
Watanabe
,
O.
,
1977
, “
Flexibility and Stress Factors of Pipe Bends – An Analysis by the Finite Ring Method
,”
ASME J. Pressure Vessel Technol.
,
99
(
2
), pp.
281
290
.10.1115/1.3454533
24.
Findlay
,
G. E.
, and
Spence
,
J.
,
1979
, “
Stress Analysis of Smooth Curved Tubes With Flanged End Constraints
,”
Int. J. Pressure Vessel Piping
,
7
(
2
), pp.
83
103
.10.1016/0308-0161(79)90020-6
25.
Thomson
,
G.
, and
Spence
,
J.
,
1983
, “
Maximum Stresses and Flexibility Factors of Smooth Pipe Bends With Tangent Pipe Terminations Under in-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
105
(
4
), pp.
329
336
.10.1115/1.3264289
26.
Whatham
,
J. F.
,
1986
, “
Pipe Bend Analysis by Thin Shell Theory
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
173
180
.10.1115/1.3171707
27.
Dhalla
,
A. K.
,
1987
, “
Collapse Characteristics of a Thin-Walled Elbow: Validation of an Analytical Procedure
,”
ASME J. Pressure Vessel Technol.
,
109
(
4
), pp.
394
401
.10.1115/1.3264922
28.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Simple Pipe Bend Element for Piping Flexibility Analysis
,”
Int. J. Pressure Vessel Piping
,
51
(
1
), pp.
85
106
.10.1016/0308-0161(92)90007-3
29.
Weiß
,
E.
,
Lietzmann
,
A.
, and
Rudolph
,
J.
,
1996
, “
Linear and Nonlinear Finite-Element Analyses of Pipe Bends
,”
Int. J. Pressure Vessel Piping
,
67
(
2
), pp.
211
217
.10.1016/0308-0161(95)00019-4
30.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
,
1998
, “
Limit Loads for Pipe Elbows With Internal Pressure Under in-Plane Closing Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
120
(
1
), pp.
35
42
.10.1115/1.2841882
31.
Tan
,
Y.
,
Matzen
,
V. C.
, and
Yu
,
L.
,
2002
, “
Correlation of Test and FEA Results for the Nonlinear Behavior of Straight Pipes and Elbows
,”
ASME J. Pressure Vessel Technol.
,
124
(
4
), pp.
465
475
.10.1115/1.1493806
32.
Karamanos
,
S. A.
,
Giakoumatos
,
E.
, and
Gresnigt
,
A. M.
,
2003
, “
Nonlinear Response and Failure of Steel Elbows Under in-Plane Bending and Pressure
,”
ASME J. Pressure Vessel Technol.
,
125
(
4
), pp.
393
402
.10.1115/1.1613949
33.
Karamanos
,
S. A.
,
Tsouvalas
,
D.
, and
Gresnigt
,
A. M.
,
2006
, “
Ultimate Bending Capacity and Buckling of Pressurized 90 Deg Steel Elbows
,”
ASME J. Pressure Vessel Technol.
,
128
(
3
), pp.
348
356
.10.1115/1.2217967
34.
Gresnigt
,
A. M.
, and
Van Foeken
,
R.
,
1985
, “
Preofresultaten Van Proeven Op Gladde Bochten En Vergelijking Daarvan Met De in OPL 85-333 Gegeven Rekenregels (in Dutch)
,” Institute for Construction Materials and Structures, Delft, The Netherlands, Report No. TNO-IBBC, Report OPL 85–334.
35.
Yoshizaki
,
K.
, and
Oguchi
,
N.
,
2000
, “
Large Deformation Behavior of Low-Angle Pipeline Elbows Subjected to In-Plane Bending
,” Proceedings of 12th World Conference on Earthquake Engineering (
12WCEE
),
New Zealand National Society for Earthquake Engineering
,
Auckland, New Zealand
, p.
8
.https://www.iitk.ac.in/nicee/wcee/article/1508.pdf
36.
Yoshizaki
,
K.
,
O'Rourke
,
T. D.
,
Bond
,
T.
,
Mason
,
J.
, and
Hamada
,
M.
,
2001
, “
Large-Scale Experiments of Permanent Ground Deformation Effects on Steel Pipelines
,” Research Progress and Accomplishments,
Multidisciplinary Center for Earthquake Engineering Research (
MCEER
),
New York
, pp.
21
28
.https://www.semanticscholar.org/paper/Large-Scale-Experiments-of-Permanent-Ground-Effects-Yoshizaki-O%E2%80%99Rourke/1dc74f666d65b1015f14cb639a69dbd6629b4879
37.
Karamitros
,
D. K.
,
Zoupantis
,
C.
, and
Bouckovalas
,
G. D.
,
2016
, “
Buried Pipelines With Bends: Analytical Verification Against Permanent Ground Displacements
,”
Can. Geotech. J.
,
53
(
11
), pp.
1782
1793
.10.1139/cgj-2016-0060
38.
ASCE
,
1984
, “
Guidelines for the Seismic Design of Oil and Gas Pipeline Systems
,”
Committee on Gas and Liquid Fuel Lifelines
,
American Society of Civil Engineers (ASCE)
, New York, p.
473
.
39.
PRCI
,
2017
, “
Pipeline Seismic Design and Assessment Guideline
,”
Prepared for the Pipeline Design and Materials Technical Committee of Pipeline Research Council International (PRCI)
, Chantilly, VA, p.
175
.
40.
IITK-GSDMA
,
2007
, “
Guidelines for Seismic Design of Buried Pipelines
,”
Prepared by Indian Institute of Technology Kanpur (IITK) and Gujarat State Disaster Management Authority (GSDMA)
,
Dash
,
S. R.
, and
Jain
,
S. K.
, eds.,
National Information Center of Earthquake Engineering (NICEE)
,
India
, p.
105
.
41.
ABAQUS
,
2018
, “
User's Manual
,”
Simulia, Dassault Systems
, Providence, RI, p.
1174
.
42.
ASME
,
2002
, “
Pipeline Transportation Systems for Liquid Hydrocarbons and Other Fluids
,”
ASME Code for Pressure Piping, B31
,
American Society of Mechanical Engineers
,
New York
, p.
127
, Standard No. ASME B31.4.
43.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress – Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics (NACA), Hampton, VA, p.
32
, Report No. 902.
44.
Sarvanis
,
G. C.
,
Karamanos
,
S. A.
,
Vazouras
,
P.
,
Mecozzi
,
E.
,
Lucci
,
A.
, and
Dakoulas
,
P.
,
2018
, “
Permanent Earthquake-Induced Actions in Buried Pipelines: Numerical Modeling and Experimental Verification
,”
Earthquake Eng. Struct. Dyn.
,
47
(
4
), pp.
966
987
.10.1002/eqe.3001
45.
Hall
,
W. J.
, and
Newmark
,
N. M.
,
1978
, “
Seismic Design Criteria for Pipelines and Facilities
,”
J. Tech. Councils ASCE
,
104
(
1
), pp.
91
107
.10.1061/JTCAD9.0000019
46.
Vazouras
,
P.
, and
Karamanos
,
S. A.
,
2017
, “
Structural Behavior of Buried Pipe Bends and Their Effect on Pipeline Response in Fault Crossing Areas
,”
Bull. Earthquake Eng.
,
15
(
11
), pp.
4999
5024
.10.1007/s10518-017-0148-0
47.
Moser
,
A. P.
,
2001
,
Buried Pipe Design
, 2nd ed.,
McGraw-Hill Professional
, New York.
48.
API 5CT
,
2011
,
Petroleum and Natural Gas Industries – Steel Pipes for Use as Casing or Tubing for Wells
, 9th ed.,
American Petroleum Institute (API) Purchasing Guidelines
, Washington, DC, p.
91
, Standard No. ISO 11960:2011.
49.
Gantes
,
C. J.
, and
Melissianos
,
V. E.
,
2016
, “
Evaluation of Seismic Protection Methods for Buried Fuel Pipelines Subjected to Fault Rupture
,”
Front. Built Environ.
,
2
(
34
), pp.
1
12
.10.3389/fbuil.2016.00034
50.
Nair
,
G. S.
, and
Dash
,
S. R.
,
2015
, “
Review of Seismic Mitigation Techniques for Buried Pipelines in Fault Zones
,” Proceedings of Structural Engineering Convention (
SEC
) 2014,
V.
Matsagar
, ed.,
Bloomsbury Publishing India
,
New Delhi, India
, pp.
2794
2810
.https://www.researchgate.net/publication/280552608_REVIEW_OF_SEISMIC_MITIGATION_TECHNIQUES_FOR_BURIED_PIPELINES_IN_FAULT_ZONES
51.
Nair
,
G. S.
,
Dash
,
S. R.
, and
Mondal
,
G.
,
2021
, “
Statistical Analysis for the Seismic Risk Assessment of Pipelines in India
,”
J. Pipeline Syst. Eng. Pract., ASCE
,
12
(
4
), p.
04021053
.10.1061/(ASCE)PS.1949-1204.0000590
You do not currently have access to this content.