Abstract

LiNixMnyCozO2 (NMC) is among the most promising cathode materials for commercial Li-ion batteries due to its high electrochemical performance. However, NMC composite cathode is still plagued with limited cyclic performance, which is influenced by its structural stability during the cycling process. The cathode, which comprises of the active material, polymeric binder, and porous conductive matrix, often exhibits large structural variation during the electrochemical cycling process. This inevitably increases the challenge of measuring the mechanical properties of the material. Even though single crystal NMC possesses better stability as compared to the polycrystalline NMC, the electrochemical performance degradation of single crystal NMC cathode remains relatively unexplored. Different sample preparation methods are compared systematically in accordance to the previous report, and a new method of sample preparation is proposed. Nano-indentation instrument is used to measure the elastic modulus and hardness of the single crystal NMC particles. The measured elastic modulus and hardness of NMC particles, under different electrochemical environments, are dependent on a large number of nano-indentation experiments and statistical analysis of the results obtained from the carefully prepared samples. The sample preparation method is the key factor that can significantly influence the nano-indentation experiment results of the NMC particles. This work shows that the mechanical properties of the single crystal NMC particles degrade significantly with number of electrochemical cycles. The decreasing elastic modulus with the number of electrochemical cycles can be fitted using a two-parameter logarithm model.

References

1.
Wangda
,
L.
,
Bohang
,
S.
, and
Manthiram
,
A.
,
2017
, “
High-Voltage Positive Electrode Materials for Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
46
(
10
), pp.
3006
3059
.10.1039/C6CS00875E
2.
Patrick
,
R.
, and
Jean-Marie
,
T.
,
2015
, “
Review-Li-Rich Layered Oxide Cathodes for Next Generation Li-Ion Batteries: Chances and Challenges
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2490
A2499
.10.1149/2.0111514jes
3.
Armand
,
M.
, and
Tarascon
,
J.-M.
,.
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.10.1038/451652a
4.
Amartya
,
M.
, and
Brian
,
W. S.
,
2014
, “
Deformation and Stress in Electrode Materials for Li-Ion Batteries
,”
Prog. Mater. Sci.
,
63
(
1
), pp.
58
116
.10.1016/j.pmatsci.2014.02.001
5.
Nicolas
,
B.
,
Aurélien
,
E.
,
Thierry
,
D.
,
Olivier
,
D.
,
Pierre
,
T.-V.
,
Laurent
,
G.
,
Sylvain
,
F.
,
Jean-Claude
,
B.
,
Eric
,
M.
, and
Bernard
,
L.
,
2017
, “
Multiscale Morphological and Electrical Characterization of Charge Transport Limitations to the Power Performance of Positive Electrode Blends for Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
7
(
8
), p.
1602239
.10.1002/aenm.201602239
6.
Simon
,
M.
,
Patrick
,
P.
,
Ben-Elias
,
B.
,
Paul
,
B.
,
Vincent
,
D. A.
,
Francesco
,
D. C.
, and
Vanessa
,
W.
,
2018
, “
Quantification and Modeling of Mechanical Degradation in Lithium-Ion Batteries Based on Nanoscale Imaging
,”
Nat. Commun.
,
9
(
1
), p.
2340
.10.1038/s41467-018-04477-1
7.
Jorn
,
R.
,
Grietus
,
M.
, and
David
,
H.
,
2019
, “
Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3189
A3200
.10.1149/2.0281914jes
8.
Luize
,
S. D. V.
,
Rong
,
X.
,
Jianlin
,
L.
, and
Kejie
,
Z.
,
2016
, “
Grid Indentation Analysis of Mechanical Properties of Composite Electrodes in Li-Ion Batteries
,”
Ext. Mech. Lett.
,
9
(
1
), pp.
495
502
.10.1016/j.eml.2016.03.002
9.
Rong
,
X.
,
Hong
,
S.
,
Luize
,
S. D. V.
, and
Kejie
,
Z.
,
2017
, “
Mechanical and Structural Degradation of LiNixMnyCozO2 Cathode in Li-Ion Batteries: An Experimental Study
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3333
A3341
.10.1149/2.1751713jes
10.
de Vasconcelos
,
L. S.
,
Sharma
,
N.
,
Xu
,
R.
, and
Zhao
,
K.
,
2019
, “
In-Situ Nanoindentation Measurement of Local Mechanical Behavior of a Li-Ion Battery Cathode in Liquid Electrolyte
,”
Exp. Mech.
,
59
(
3
), pp.
337
347
.10.1007/s11340-018-00451-6
11.
Dingying
,
D.
,
Yikai
,
W.
, and
Yang-Tse
,
C.
,
2019
, “
Communication-Fracture Behavior of Single LiNi0.33Mn0.33Co0.33O2 Particles Studied by Flat Punch Indentation
,”
J. Electrochem. Soc.
,
166
(
13
), pp.
A2749
A2751
.10.1149/2.0331913jes
12.
Li
,
J.
,
Li
,
H.
,
Stone
,
W.
,
Weber
,
R.
,
Hy
,
S.
, and
Dahn
,
J. R.
,.
2017
, “
Synthesis of Single Crystal LiNi0.5Mn0.3Co0.2O2 for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
14
), pp.
A3529
A3537
.10.1149/2.0401714jes
13.
Jing
,
L.
,
Andrew
,
C.
,
Hongyang
,
L.
,
Stephen
,
G.
,
Deijun
,
X.
,
Chatzidakis
,
M.
,
Jenn
,
A.
,
Botton
,
G. A.
, and
Dahn
,
J.
,
2017
, “
Comparison of Single Crystal and Polycrystalline LiNi0.5Mn0.3Co0.2O2 Positive Electrode Materials for High Voltage Li-Ion Cells
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1534
A1544
.10.1149/2.0991707jes
14.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
15.
Swain
,
M. V.
, and
Field
,
J. S.
,
1996
, “
Investigation of the Mechanical Properties of Two Glassy Carbon Materials Using Pointed Indenters
,”
Philos. Mag. A
,
74
(
5
), pp.
1085
1096
.10.1080/01418619608239709
16.
Na Yeon
,
K.
,
Taeeun
,
Y.
,
Jun Ho
,
S.
,
Ji-Sang
,
Y.
, and
Zonghoon
,
L.
,
2016
, “
Microstructural Study on Degradation Mechanism of Layered LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Analytical Transmission Electron Microscopy
,”
J. Power Sources
,
307
(
1
), pp.
641
648
.10.1016/j.jpowsour.2016.01.023
You do not currently have access to this content.